Displaying 41 – 60 of 129

Showing per page

Regulární variace: od škálové invariance ke konvergenčním testům

Pavel Řehák (2023)

Pokroky matematiky, fyziky a astronomie

Článek se snaží přiblížit některé aspekty teorie regulární variace. Jde o pojem z klasické analýzy, který má bohatou historii a četné aplikace v teorii pravděpodobnosti, teorii čísel, integrálních transformacích, komplexní analýze, diferenciálních rovnicích, teorii her či teorii grafů. Regulárně měnící se funkce mají souvislost s mnoha matematickými pojmy, včetně škálové invariance, kterou náš výklad začíná, či konvergenčními testy pro nekonečné řady, kterými náš výklad končí. V průběhu výkladu...

Regulated functions

Dana Fraňková (1991)

Mathematica Bohemica

The first section consists of auxiliary results about nondecreasing real functions. In the second section a new characterization of relatively compact sets of regulated functions in the sup-norm topology is brought, and the third section includes, among others, an analogue of Helly's Choice Theorem in the space of regulated functions.

Regulated functions with values in Banach space

Dana Fraňková (2019)

Mathematica Bohemica

This paper deals with regulated functions having values in a Banach space. In particular, families of equiregulated functions are considered and criteria for relative compactness in the space of regulated functions are given.

Relations between multidimensional interval-valued variational problems and variational inequalities

Anurag Jayswal, Ayushi Baranwal (2022)

Kybernetika

In this paper, we introduce a new class of variational inequality with its weak and split forms to obtain an L U -optimal solution to the multi-dimensional interval-valued variational problem, which is a wider class of interval-valued programming problem in operations research. Using the concept of (strict) L U -convexity over the involved interval-valued functionals, we establish equivalence relationships between the solutions of variational inequalities and the (strong) L U -optimal solutions of the multi-dimensional...

Relations between weighted Orlicz and B M O φ spaces through fractional integrals

Eleonor Ofelia Harboure, Oscar Salinas, Beatriz E. Viviani (1999)

Commentationes Mathematicae Universitatis Carolinae

We characterize the class of weights, invariant under dilations, for which a modified fractional integral operator I α maps weak weighted Orlicz - φ spaces into appropriate weighted versions of the spaces B M O ψ , where ψ ( t ) = t α / n φ - 1 ( 1 / t ) . This generalizes known results about boundedness of I α from weak L p into Lipschitz spaces for p > n / α and from weak L n / α into B M O . It turns out that the class of weights corresponding to I α acting on weak - L φ for φ of lower type equal or greater than n / α , is the same as the one solving the problem for weak...

Relative rearrangement and interpolation inequalities.

J. Michel Rakotoson (2003)

RACSAM

We prove here that the Poincaré-Sobolev pointwise inequalities for the relative rearrangement can be considered as the root of a great number of inequalities in various sets not necessarily vector spaces. In particular, new interpolation inequalities can be derived.

Currently displaying 41 – 60 of 129