History, generalizations and unified treatment of two Ostrowski's inequalities.
Hölder continuous functions on compact sets and functions spaces
Hölder functions in Bergman type spaces
It seems impossible to extend the boundary value theory of Hardy spaces to Bergman spaces since there is no boundary value for a function in a Bergman space in general. In this article we provide a new idea to show what is the correct version of Bergman spaces by demonstrating the extension to Bergman spaces of a result of Hardy-Littlewood in Hardy spaces, which characterizes the Hölder class of boundary values for a function from Hardy spaces in the unit disc in terms of the growth of its derivative....
Holomorphic extension maps for spaces of Whitney jets.
The key result (Theorem 1) provides the existence of a holomorphic approximation map for some space of C∞-functions on an open subset of Rn. This leads to results about the existence of a continuous linear extension map from the space of the Whitney jets on a closed subset F of Rn into a space of holomorphic functions on an open subset D of Cn such that D ∩ Rn = RnF.
Holomorphic extension of a function whose odd derivatives are summable
Holomorphic Lipschitz functions in balls.
Holomorphic Sobolev spaces on the ball [Book]
Homogeneous aggregation operators
Recently, the utilization of invariant aggregation operators, i.e., aggregation operators not depending on a given scale of measurement was found as a very current theme. One type of invariantness of aggregation operators is the homogeneity what means that an aggregation operator is invariant with respect to multiplication by a constant. We present here a complete characterization of homogeneous aggregation operators. We discuss a relationship between homogeneity, kernel property and shift-invariance...
Homogeneous Besov spaces on locally compact Vilenkin groups
Homogeneous means and some functional equations
Homogeneous subsets of the real line
How smooth is almost every function in a Sobolev space?
We show that almost every function (in the sense of prevalence) in a Sobolev space is multifractal: Its regularity changes from point to point; the sets of points with a given Hölder regularity are fractal sets, and we determine their Hausdorff dimension.
How to define "convex functions" on differentiable manifolds
In the paper a class of families (M) of functions defined on differentiable manifolds M with the following properties: . if M is a linear manifold, then (M) contains convex functions, . (·) is invariant under diffeomorphisms, . each f ∈ (M) is differentiable on a dense -set, is investigated.
Hukuhara's differentiable iteration semigroups of linear set-valued functions
Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. A family of continuous linear set-valued functions is a differentiable iteration semigroup with F⁰(x) = x for x ∈ K if and only if the set-valued function is a solution of the problem , Φ(0,x) = x, for x ∈ K and t ≥ 0, where denotes the Hukuhara derivative of Φ(t,x) with respect to t and for x ∈ K.
Hurewicz properties, non distinguishing convergence properties and sequence selection properties
Hurewicz scheme
Hybrid approximations via second order combined dynamic derivatives on time scales.
Hydrodynamic limit of a d-dimensional exclusion process with conductances
Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m aj αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d ∂xk ∂Wk Φ(ρ). We also derive some properties of the operator ∑k=1d ...
Hydrodynamical behavior of symmetric exclusion with slow bonds
We consider the exclusion process in the one-dimensional discrete torus with points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance , with . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter . If , the hydrodynamic limit is given by the usual heat equation. If , it is given by a parabolic equation involving an operator , where ...