Displaying 61 – 80 of 85

Showing per page

Hölder functions in Bergman type spaces

Yingwei Chen, Guangbin Ren (2012)

Studia Mathematica

It seems impossible to extend the boundary value theory of Hardy spaces to Bergman spaces since there is no boundary value for a function in a Bergman space in general. In this article we provide a new idea to show what is the correct version of Bergman spaces by demonstrating the extension to Bergman spaces of a result of Hardy-Littlewood in Hardy spaces, which characterizes the Hölder class of boundary values for a function from Hardy spaces in the unit disc in terms of the growth of its derivative....

Holomorphic extension maps for spaces of Whitney jets.

Jean Schmets, Manuel Valdivia (2001)

RACSAM

The key result (Theorem 1) provides the existence of a holomorphic approximation map for some space of C∞-functions on an open subset of Rn. This leads to results about the existence of a continuous linear extension map from the space of the Whitney jets on a closed subset F of Rn into a space of holomorphic functions on an open subset D of Cn such that D ∩ Rn = RnF.

Homogeneous aggregation operators

Tatiana Rückschlossová, Roman Rückschloss (2006)

Kybernetika

Recently, the utilization of invariant aggregation operators, i.e., aggregation operators not depending on a given scale of measurement was found as a very current theme. One type of invariantness of aggregation operators is the homogeneity what means that an aggregation operator is invariant with respect to multiplication by a constant. We present here a complete characterization of homogeneous aggregation operators. We discuss a relationship between homogeneity, kernel property and shift-invariance...

How smooth is almost every function in a Sobolev space?

Aurélia Fraysse, Stéphane Jaffard (2006)

Revista Matemática Iberoamericana

We show that almost every function (in the sense of prevalence) in a Sobolev space is multifractal: Its regularity changes from point to point; the sets of points with a given Hölder regularity are fractal sets, and we determine their Hausdorff dimension.

How to define "convex functions" on differentiable manifolds

Stefan Rolewicz (2009)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In the paper a class of families (M) of functions defined on differentiable manifolds M with the following properties: 1 . if M is a linear manifold, then (M) contains convex functions, 2 . (·) is invariant under diffeomorphisms, 3 . each f ∈ (M) is differentiable on a dense G δ -set, is investigated.

Hukuhara's differentiable iteration semigroups of linear set-valued functions

Andrzej Smajdor (2004)

Annales Polonici Mathematici

Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. A family F t : t 0 of continuous linear set-valued functions F t : K c c ( K ) is a differentiable iteration semigroup with F⁰(x) = x for x ∈ K if and only if the set-valued function Φ ( t , x ) = F t ( x ) is a solution of the problem D t Φ ( t , x ) = Φ ( t , G ( x ) ) : = Φ ( t , y ) : y G ( x ) , Φ(0,x) = x, for x ∈ K and t ≥ 0, where D t Φ ( t , x ) denotes the Hukuhara derivative of Φ(t,x) with respect to t and G ( x ) : = l i m s 0 + ( F s ( x ) - x ) / s for x ∈ K.

Hurewicz scheme

Michal Staš (2008)

Acta Universitatis Carolinae. Mathematica et Physica

Hydrodynamic limit of a d-dimensional exclusion process with conductances

Fábio Júlio Valentim (2012)

Annales de l'I.H.P. Probabilités et statistiques

Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m  aj  αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on 𝕋 d , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d  ∂xk  ∂Wk  Φ(ρ). We also derive some properties of the operator ∑k=1d  ...

Hydrodynamical behavior of symmetric exclusion with slow bonds

Tertuliano Franco, Patrícia Gonçalves, Adriana Neumann (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider the exclusion process in the one-dimensional discrete torus with N points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance N - β , with β [ 0 , ) . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter β . If β [ 0 , 1 ) , the hydrodynamic limit is given by the usual heat equation. If β = 1 , it is given by a parabolic equation involving an operator d d x d d W , where W ...

Currently displaying 61 – 80 of 85