Characterization of the collapsing meromorphic products.
In this paper we extend results of Blokh, Bruckner, Humke and Sm’ıtal [Trans. Amer. Math. Soc. 348 (1996), 1357–1372] about characterization of -limit sets from the class of continuous maps of the interval to the class of continuous maps of the circle. Among others we give geometric characterization of -limit sets and then we prove that the family of -limit sets is closed with respect to the Hausdorff metric.
We prove that several results of Talagrand proved for the Pettis integral also hold for the Kurzweil-Henstock-Pettis integral. In particular the Kurzweil-Henstock-Pettis integrability can be characterized by cores of the functions and by properties of suitable operators defined by integrands.
This paper is an extended version of an invited talk presented during the Orlicz Centenary Conference (Poznań, 2003). It contains a brief survey of applications to classical problems of analysis of the theory of the so-called PLS-spaces (in particular, spaces of distributions and real analytic functions). Sequential representations of the spaces and the theory of the functor Proj¹ are applied to questions like solvability of linear partial differential equations, existence of a solution depending...