Local Field Singular Integrals with Complex Homogeneity.
For a Tychonoff space , is the lattice-ordered group (-group) of real-valued continuous functions on , and is the sub--group of bounded functions. A property that might have is (AP) whenever is a divisible sub--group of , containing the constant function 1, and separating points from closed sets in , then any function in can be approximated uniformly over by functions which are locally in . The vector lattice version of the Stone-Weierstrass Theorem is more-or-less equivalent...
Let be a non-negative matrix. Denote by the supremum of those that satisfy the inequality where and and also is an increasing, non-negative sequence of real numbers. If , we use instead of . In this paper we obtain a Hardy type formula for , where is a Hausdorff matrix and . Another purpose of this paper is to establish a lower bound for , where is the Nörlund matrix associated with the sequence and . Our results generalize some works of Bennett, Jameson and present authors....
We study lower estimates for integral fuctionals for which the structure of the integrand is defined by a graph, in particular, by a bipartite graph. Functionals of such kind appear in statistical mechanics and quantum chemistry in the context of Mayer's transformation and Mayer's cluster integrals. Integral functionals generated by graphs play an important role in the theory of graph limits. Specific kind of functionals generated by bipartite graphs are at the center of the famous and much studied...
In this paper we consider some matrix operators on block weighted sequence spaces . The problem is to find the lower bound of some matrix operators such as Hausdorff and Hilbert matrices on . This study is an extension of papers by G. Bennett, G.J.O. Jameson and R. Lashkaripour.
Lower semicontinuity results are obtained for multiple integrals of the kind , where is a given positive measure on , and the vector-valued function belongs to the Sobolev space associated with . The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to . More precisely, for fully general , a notion of quasiconvexity for along the tangent bundle to , turns out to be necessary for lower...
Lower semicontinuity results are obtained for multiple integrals of the kind , where μ is a given positive measure on , and the vector-valued function u belongs to the Sobolev space associated with μ. The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to μ. More precisely, for fully general μ, a notion of quasiconvexity for f along the tangent bundle to μ, turns out to be necessary for lower...