Positive solutions for three-point nonlinear fractional boundary value problems.
It is quite natural to conjecture that a positively homogeneous function with degree d ≥ 2 on satisfies the Łojasiewicz gradient inequality with exponent θ = 1/d without any need for an analyticity assumption. We show that this property is true under some additional hypotheses, but not always, even for N = 2.
Classical models of clusters’ fission have failed to fully explain strange phenomenons like the phenomenon of shattering (Ziff et al., 1987) and the sudden appearance of infinitely many particles in some systems with initial finite particles number. Furthermore, the bounded perturbation theorem presented in (Pazy, 1983) is not in general true in solution operators theory for models of fractional order γ (with 0 < γ ≤ 1). In this article, we introduce and study a model that can be understood as...
A new class of fractional 2D linear discrete-time systems is introduced. The fractional difference definition is applied to each dimension of a 2D Roesser model. Solutions of these systems are derived using a 2D Z-transform. The classical Cayley-Hamilton theorem is extended to 2D fractional systems described by the Roesser model. Necessary and sufficient conditions for the positivity and stabilization by the state-feedback of fractional 2D linear systems are established. A procedure for the computation...
The purpose of the paper is to extend results of the potential theory of the classical Schrödinger operator to the α-stable case. To obtain this we analyze a weak version of the Schrödinger operator based on the fractional Laplacian and we prove the Conditional Gauge Theorem.
We generalize the Malgrange preparation theorem to matrix valued functions satisfying the condition that vanishes to finite order at . Then we can factor near (0,0), where is inversible and is polynomial function of depending on . The preparation is (essentially) unique, up to functions vanishing to infinite order at , if we impose some additional conditions on . We also have a generalization of the division theorem, and analytic versions generalizing the Weierstrass preparation...
This note brings a complement to the study of genericity of functions which are nowhere analytic mainly in a measure-theoretic sense. We extend this study to Gevrey classes of functions.