Polynomial inequalities for non-commuting operators.
K. Nikodem and the present author proved in [3] a theorem concerning separation by affine functions. Our purpose is to generalize that result for polynomials. As a consequence we obtain two theorems on separation of an n-convex function from an n-concave function by a polynomial of degree at most n and a stability result of Hyers-Ulam type for polynomials.
The aim of this paper is to give a necessary and sufficient condition for a set-valued function to be a polynomial s.v. function of order at most 2.
Let be the algebra of quaternions or octonions . In this manuscript an elementary proof is given, based on ideas of Cauchy and D’Alembert, of the fact that an ordinary polynomial has a root in . As a consequence, the Jacobian determinant is always non-negative in . Moreover, using the idea of the topological degree we show that a regular polynomial over has also a root in . Finally, utilizing multiplication () in , we prove various results on the topological degree of products...
By Descartes’ rule of signs, a real degree polynomial with all nonvanishing coefficients with sign changes and sign preservations in the sequence of its coefficients () has positive and negative roots, where and . For , for every possible choice of the sequence of signs of coefficients of (called sign pattern) and for every pair satisfying these conditions there exists a polynomial with exactly positive and exactly negative roots (all of them simple). For this is not...