Displaying 1181 – 1200 of 4583

Showing per page

Embeddings between weighted Copson and Cesàro function spaces

Amiran Gogatishvili, Rza Mustafayev, Tuğçe Ünver (2017)

Czechoslovak Mathematical Journal

In this paper, characterizations of the embeddings between weighted Copson function spaces Cop p 1 , q 1 ( u 1 , v 1 ) and weighted Cesàro function spaces Ces p 2 , q 2 ( u 2 , v 2 ) are given. In particular, two-sided estimates of the optimal constant c in the inequality d ( 0 0 t f ( τ ) p 2 v 2 ( τ ) d τ q 2 / p 2 u 2 ( t ) d t ) 1 / q 2 c 0 t f ( τ ) p 1 v 1 ( τ ) d τ q 1 / p 1 u 1 ( t ) d t 1 / q 1 , d where p 1 , p 2 , q 1 , q 2 ( 0 , ) , p 2 q 2 and u 1 , u 2 , v 1 , v 2 are weights on ( 0 , ) , are obtained. The most innovative part consists of the fact that possibly different parameters p 1 and p 2 and possibly different inner weights v 1 and v 2 are allowed. The proof is based on the combination of duality techniques with estimates...

Embeddings of concave functions and duals of Lorentz spaces.

Gord Sinnamon (2002)

Publicacions Matemàtiques

A simple expression is presented that is equivalent to the norm of the Lpv → Lqu embedding of the cone of quasi-concave functions in the case 0 < q < p < ∞. The result is extended to more general cones and the case q = 1 is used to prove a reduction principle which shows that questions of boundedness of operators on these cones may be reduced to the boundedness of related operators on whole spaces. An equivalent norm for the dual of the Lorentz spaceΓp(v) = { f: ( ∫0∞ (f**)pv...

Currently displaying 1181 – 1200 of 4583