Interpolation Gevrey dans les domaines de type fini de C2.
In this paper, we extend the traditional linear regression methods to the (numerical input)-(interval output) data case assuming both the observation/measurement error and the indeterminacy of the input-output relationship. We propose three different models based on three different assumptions of interval output data. In each model, the errors are defined as intervals by solving the interval equation representing the relationship among the interval output, the interval function and the interval...
In this article we formalize rational functions as pairs of polynomials and define some basic notions including the degree and evaluation of rational functions [8]. The main goal of the article is to provide properties of rational functions necessary to prove a theorem on the stability of networks
An invariance formula in the class of generalized p-variable quasiarithmetic means is provided. An effective form of the limit of the sequence of iterates of mean-type mappings of this type is given. An application to determining functions which are invariant with respect to generalized quasiarithmetic mean-type mappings is presented.
Under the assumption of twice continuous differentiability of some of the functions involved we determine all the weighted quasi-arithmetic means M,N,K such that K is (M,N)-invariant, that is, K∘(M,N) = K. Some applications to iteration theory and functional equations are presented.
Let I be a real interval, J a subinterval of I, p ≥ 2 an integer number, and M1, ... , Mp : Ip → I the continuous means. We consider the problem of invariance of the graphs of functions ϕ : Jp−1 → I with respect to the mean-type mapping M = (M1, ... , Mp).Applying a result on the existence and uniqueness of an M -invariant mean [7], we prove that if the graph of a continuous function ϕ : Jp−1 → I ...
For the full shift (Σ₂,σ) on two symbols, we construct an invariant distributionally ϵ-scrambled set for all 0 < ϵ < diam Σ₂ in which each point is transitive, but not weakly almost periodic.
We present inversion results for Lipschitz maps f : Ω ⊂ ℝN → (Y, d) and stability of inversion for uniformly convergent sequences. These results are based on the Area Formula and on the l.s.c. of metric Jacobians.
We give conditions on Gromov-Hausdorff convergent inverse systems of metric measure graphs which imply that the measured Gromov-Hausdorff limit (equivalently, the inverse limit) is a PI space i.e., it satisfies a doubling condition and a Poincaré inequality in the sense of Heinonen-Koskela [12]. The Poincaré inequality is actually of type (1, 1). We also give a systematic construction of examples for which our conditions are satisfied. Included are known examples of PI spaces, such as Laakso spaces,...
MSC 2010: 03E72, 26E50, 28E10In this paper, we prove a Stolarsky type inequality for pseudo-integrals.
We start from the following problem: given a function what can be said about the set of points in the range where level sets are «big» according to an opportune definition. This yields the necessity of an analysis of the structure of level sets of functions. We investigate the analogous problem for functions. These are in a certain way intermediate between and functions. The results involve a mixture of Real Analysis, Geometric Measure Theory and Classical Descriptive Set Theory.
Analogues of the classical Banach-Stone theorem for spaces of continuous functions are studied in the context of the spaces of absolutely continuous functions introduced by Ashton and Doust. We show that if AC(σ₁) is algebra isomorphic to AC(σ₂) then σ₁ is homeomorphic to σ₂. The converse however is false. In a positive direction we show that the converse implication does hold if the sets σ₁ and σ₂ are confined to a restricted collection of compact sets, such as the set of all simple polygons.