-regularly varying functions and some asymptotic relations.
For a Lebesgue integrable complex-valued function defined on let be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that as . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of there is a definite rate at which the Walsh-Fourier transform tends to zero. We...
We prove some quantitatively sharp estimates concerning the Δ₂ and ∇₂ conditions for functions which generalize known ones. The sharp forms arise in the connection between Orlicz space theory and the theory of elliptic partial differential equations.