Page 1

Displaying 1 – 4 of 4

Showing per page

Decaying Regularly Varying Solutions of Third-order Differential Equations with a Singular Nonlinearity

Ivana Kučerová (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

This paper is concerned with asymptotic analysis of strongly decaying solutions of the third-order singular differential equation x ' ' ' + q ( t ) x - γ = 0 , by means of regularly varying functions, where γ is a positive constant and q is a positive continuous function on [ a , ) . It is shown that if q is a regularly varying function, then it is possible to establish necessary and sufficient conditions for the existence of slowly varying solutions and regularly varying solutions of (A) which decrease to 0 as t and to acquire...

Decomposition and Moser's lemma.

David E. Edmunds, Miroslav Krbec (2002)

Revista Matemática Complutense

Using the idea of the optimal decomposition developed in recent papers (Edmunds-Krbec, 2000) and in Cruz-Uribe-Krbec we study the boundedness of the operator Tg(x) = ∫x1 g(u)du / u, x ∈ (0,1), and its logarithmic variant between Lorentz spaces and exponential Orlicz and Lorentz-Orlicz spaces. These operators are naturally linked with Moser's lemma, O'Neil's convolution inequality, and estimates for functions with prescribed rearrangement. We give sufficient conditions for and very simple proofs...

Differentiation of n-convex functions

H. Fejzić, R. E. Svetic, C. E. Weil (2010)

Fundamenta Mathematicae

The main result of this paper is that if f is n-convex on a measurable subset E of ℝ, then f is n-2 times differentiable, n-2 times Peano differentiable and the corresponding derivatives are equal, and f ( n - 1 ) = f ( n - 1 ) except on a countable set. Moreover f ( n - 1 ) is approximately differentiable with approximate derivative equal to the nth approximate Peano derivative of f almost everywhere.

Currently displaying 1 – 4 of 4

Page 1