On determining sets for the class of somewhat continuous functions
A function f: ℝ → {0,1} is weakly symmetric (resp. weakly symmetrically continuous) at x ∈ ℝ provided there is a sequence hₙ → 0 such that f(x+hₙ) = f(x-hₙ) = f(x) (resp. f(x+hₙ) = f(x-hₙ)) for every n. We characterize the sets S(f) of all points at which f fails to be weakly symmetrically continuous and show that f must be weakly symmetric at some x ∈ ℝ∖S(f). In particular, there is no f: ℝ → {0,1} which is nowhere weakly symmetric. It is also shown that if at each point x we...
We prove that if f: → is Darboux and has a point of prime period different from , i = 0,1,..., then the entropy of f is positive. On the other hand, for every set A ⊂ ℕ with 1 ∈ A there is an almost continuous (in the sense of Stallings) function f: → with positive entropy for which the set Per(f) of prime periods of all periodic points is equal to A.