On the comparison of error bounds for finite difference schemes.
We prove some results concerning the entropy of Darboux (and almost continuous) functions. We first generalize some theorems valid for continuous functions, and then we study properties which are specific to Darboux functions. Finally, we give theorems on approximating almost continuous functions by functions with infinite entropy.
The main goal of this paper is to characterize the family of all functions f which satisfy the following condition: whenever g is a Darboux function and f < g on ℝ there is a Darboux function h such that f < h < g on ℝ.
The characterization of the pointwise limits of the sequences of Świątkowski functions is given. Modifications of Świątkowski property with respect to different topologies finer than the Euclidean topology are discussed.
Let I ⊂ ℝ be an open interval and let A ⊂ I be any set. Every Baire 1 function f: I → ℝ coincides on A with a function g: I → ℝ which is simultaneously approximately continuous and quasicontinuous if and only if the set A is nowhere dense and of Lebesgue measure zero.
Estudiamos cuando el límite uniforme de una red de funciones cuasi-continuas con valores en un espacio localmente convexo X es también una función cuasi-continua, resaltando que esta propiedad depende del menor cardinal de un sistema fundamental de entornos de O en X, y estableciendo condiciones necesarias y suficientes. El principal resultado de este trabajo es el Teorema 15, en el que los resultados de [7] y [10] son mejorados, en relación al Teorema de L. Schwartz.