On certain formulas for the multivariable hypergeometric functions.
In this paper we give a sufficient condition on the pair of weights for the boundedness of the Weyl fractional integral from into . Under some restrictions on and , this condition is also necessary. Besides, it allows us to show that for any there exist non-trivial weights such that is bounded from into itself, even in the case .
One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.
Numerical methods for fractional differential equations have specific properties with respect to the ones for ordinary differential equations. The paper discusses Euler methods for Caputo differential equation initial value problem. The common properties of the methods are stated and demonstrated by several numerical experiments. Python codes are available to researchers for numerical simulations.
In this paper we define derivatives of fractional order on spaces of homogeneous type by generalizing a classical formula for the fractional powers of the Laplacean [S1], [S2], [SZ] and introducing suitable quasidistances related to an approximation of the identity. We define integration of fractional order as in [GV] but using quasidistances related to the approximation of the identity mentioned before.We show that these operators act on Lipschitz spaces as in the classical cases. We prove that...
MSC 2010: 26A33, 33E12, 33C60, 35R11In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.
Mathematics Subject Classification: 33D60, 33D90, 26A33Fractional q-integral operators of generalized Weyl type, involving generalized basic hypergeometric functions and a basic analogue of Fox’s H-function have been investigated. A number of integrals involving various q-functions have been evaluated as applications of the main results.
In this paper we prove the continuity of fractional integrals acting on nonhomogeneous function spaces defined on spaces of homogeneous type with finite measure. A definition of the molecules which are used in the theory is given. Results are proved for , , BMO, and Lipschitz spaces.
2000 Mathematics Subject Classification: 26A33, 42B20There is given a generalization of the Marchaud formula for one-dimensional fractional derivatives on an interval (a, b), −∞ < a < b ≤ ∞, to the multidimensional case of functions defined on a region in R^n
Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.In this paper the multi-dimensional analog of the Gillis-Weiss random walk model is studied. The convergence of this random walk to a fractional diffusion process governed by a symmetric operator defined as a hypersingular integral or the inverse of the Riesz potential in the sense of distributions is proved.* Supported by German Academic Exchange Service (DAAD).
Mathematics Subject Classification: 33D60, 33E12, 26A33Based on the fractional q–integral with the parametric lower limit of integration, we consider the fractional q–derivative of Caputo type. Especially, its applications to q-exponential functions allow us to introduce q–analogues of the Mittag–Leffler function. Vice versa, those functions can be used for defining generalized operators in fractional q–calculus.