Displaying 221 – 240 of 363

Showing per page

On conditions for the boundedness of the Weyl fractional integral on weighted L p spaces

Liliana De Rosa, Alberto de la Torre (2004)

Commentationes Mathematicae Universitatis Carolinae

In this paper we give a sufficient condition on the pair of weights ( w , v ) for the boundedness of the Weyl fractional integral I α + from L p ( v ) into L p ( w ) . Under some restrictions on w and v , this condition is also necessary. Besides, it allows us to show that for any p : 1 p < there exist non-trivial weights w such that I α + is bounded from L p ( w ) into itself, even in the case α > 1 .

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.

On Euler methods for Caputo fractional differential equations

Petr Tomášek (2023)

Archivum Mathematicum

Numerical methods for fractional differential equations have specific properties with respect to the ones for ordinary differential equations. The paper discusses Euler methods for Caputo differential equation initial value problem. The common properties of the methods are stated and demonstrated by several numerical experiments. Python codes are available to researchers for numerical simulations.

On fractional differentiation and integration on spaces of homogeneous type.

A. Eduardo Gatto, Carlos Segovia, Stephen Vági (1996)

Revista Matemática Iberoamericana

In this paper we define derivatives of fractional order on spaces of homogeneous type by generalizing a classical formula for the fractional powers of the Laplacean [S1], [S2], [SZ] and introducing suitable quasidistances related to an approximation of the identity. We define integration of fractional order as in [GV] but using quasidistances related to the approximation of the identity mentioned before.We show that these operators act on Lipschitz spaces as in the classical cases. We prove that...

On Fractional Helmholtz Equations

Samuel, M., Thomas, Anitha (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 33E12, 33C60, 35R11In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.

On Generalized Weyl Fractional q-Integral Operator Involving Generalized Basic Hypergeometric Functions

Yadav, R., Purohit, S., Kalla, S. (2008)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 33D60, 33D90, 26A33Fractional q-integral operators of generalized Weyl type, involving generalized basic hypergeometric functions and a basic analogue of Fox’s H-function have been investigated. A number of integrals involving various q-functions have been evaluated as applications of the main results.

On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes

Umarov, Sabir, Gorenflo, Rudolf (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 47B06, 47G30, 60G50, 60G52, 60G60.In this paper the multi-dimensional analog of the Gillis-Weiss random walk model is studied. The convergence of this random walk to a fractional diffusion process governed by a symmetric operator defined as a hypersingular integral or the inverse of the Riesz potential in the sense of distributions is proved.* Supported by German Academic Exchange Service (DAAD).

On q–Analogues of Caputo Derivative and Mittag–Leffler Function

Rajkovic, Predrag, Marinkovic, Sladjana, Stankovic, Miomir (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 33D60, 33E12, 26A33Based on the fractional q–integral with the parametric lower limit of integration, we consider the fractional q–derivative of Caputo type. Especially, its applications to q-exponential functions allow us to introduce q–analogues of the Mittag–Leffler function. Vice versa, those functions can be used for defining generalized operators in fractional q–calculus.

Currently displaying 221 – 240 of 363