2000 Mathematics Subject Classification: 26A33, 33C60, 44A20In this survey we present a brief history and the basic ideas of the generalized
fractional calculus (GFC). The notion “generalized operator of fractional integration” appeared in the papers of the jubilarian Prof. S.L. Kalla
in the years 1969-1979 when he suggested the general form of these operators and studied examples of them whose kernels were special functions as the Gauss and generalized hypergeometric functions, including arbitrary...
Mathematics Subject Classification: 35CXX, 26A33, 35S10The well known Duhamel principle allows to reduce the Cauchy problem for linear inhomogeneous partial differential equations to the Cauchy
problem for corresponding homogeneous equations. In the paper one of the possible generalizations of the classical Duhamel principle to the time-fractional pseudo-differential equations is established.* This work partially supported by NIH grant P20 GMO67594.
Mathematics Subject Classification: 26A33, 30B10, 33B15, 44A10, 47N70, 94C05We suggest a fractional differential equation that combines the simple
harmonic oscillations of an LC circuit with the discharging of an RC circuit.
A series solution is obtained for the suggested fractional differential
equation. When the fractional order α = 0, we get the solution for the RC
circuit, and when α = 1, we get the solution for the LC circuit. For arbitrary
α we get a general solution which shows how the...
MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22The fractional calculus (FC) is an area of intensive research and development. In a previous paper and poster we tried to exhibit its recent state, surveying the period of 1966-2010. The poster accompanying the present note illustrates the major contributions during the period 1695-1970, the "old history" of FC.
MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22In the last decades fractional calculus became an area of intense re-search and development. The accompanying poster illustrates the major
contributions during the period 1966-2010.