Displaying 301 – 320 of 363

Showing per page

Solving Fractional Diffusion-Wave Equations Using a New Iterative Method

Daftardar-Gejji, Varsha, Bhalekar, Sachin (2008)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 31B10In the present paper a New Iterative Method [1] has been employed to find solutions of linear and non-linear fractional diffusion-wave equations. Illustrative examples are solved to demonstrate the efficiency of the method.* This work has partially been supported by the grant F. No. 31-82/2005(SR) from the University Grants Commission, N. Delhi, India.

Some Fractional Extensions of the Temperature Field Problem in Oil Strata

Boyadjiev, Lyubomir (2007)

Fractional Calculus and Applied Analysis

This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed...

Some Properties of Mittag-Leffler Functions and Matrix-Variate Analogues: A Statistical Perspective

Mathai, A. (2010)

Fractional Calculus and Applied Analysis

Mathematical Subject Classification 2010:26A33, 33E99, 15A52, 62E15.Mittag-Leffler functions and their generalizations appear in a large variety of problems in different areas. When we move from total differential equations to fractional equations Mittag-Leffler functions come in naturally. Fractional reaction-diffusion problems in physical sciences and general input-output models in other disciplines are some of the examples in this direction. Some basic properties of Mittag-Leffler functions are...

Some weighted norm inequalities for a one-sided version of g * λ

L. de Rosa, C. Segovia (2006)

Studia Mathematica

We study the boundedness of the one-sided operator g λ , φ between the weighted spaces L p ( M ¯ w ) and L p ( w ) for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of g λ , φ . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of g λ , φ from L p ( ( M ¯ ) [ p / 2 ] + 1 w ) to L p ( w ) , where ( M ¯ ) k denotes the operator M¯ iterated k times.

Stochastic Solution of a KPP-Type Nonlinear Fractional Differential Equation

Cipriano, F., Ouerdiane, H., Vilela Mendes, R. (2009)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 76M35, 82B31A stochastic solution is constructed for a fractional generalization of the KPP (Kolmogorov, Petrovskii, Piskunov) equation. The solution uses a fractional generalization of the branching exponential process and propagation processes which are spectral integrals of Levy processes.

Studies on BVPs for IFDEs involved with the Riemann-Liouville type fractional derivatives

Yuji Liu (2016)

Nonautonomous Dynamical Systems

In this article, we present a new method for converting the boundary value problems for impulsive fractional differential systems involved with the Riemann-Liouville type derivatives to integral systems, some existence results for solutions of a class of boundary value problems for nonlinear impulsive fractional differential systems at resonance case and non-resonance case are established respectively. Our analysis relies on the well known Schauder’s fixed point theorem and coincidence degree theory....

Currently displaying 301 – 320 of 363