On the Fourier Coefficients of a Function of Lambda - Bounded Variation
For a Lebesgue integrable complex-valued function defined on let be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that as . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of there is a definite rate at which the Walsh-Fourier transform tends to zero. We...
In this paper we prove that each differentiation basis associated with a -adic path system defined by a bounded sequence satisfies the Ward Theorem.
The -finiteness of a variational measure, generated by a real valued function, is proved whenever it is -finite on all Borel sets that are negligible with respect to a -finite variational measure generated by a continuous function.
We discuss variations of functions that provide conceptually similar descriptive definitions of the Lebesgue and Denjoy-Perron integrals.
A simple arc ϕ is said to be a Whitney arc if there exists a non-constant function f such that for every . G. Petruska raised the question whether there exists a simple arc ϕ for which every subarc is a Whitney arc, but for which there is no parametrization satisfying . We answer this question partially, and study the structural properties of possible monotone, strictly monotone and VBG* functions f and associated Whitney arcs.
The abstract Perron-Stieltjes integral in the Kurzweil-Henstock sense given via integral sums is used for defining convolutions of Banach space valued functions. Basic facts concerning integration are preseted, the properties of Stieltjes convolutions are studied and applied to obtain resolvents for renewal type Stieltjes convolution equations.
In this paper we give a representation theorem for the orthogonally additive functionals on the space in terms of a non-linear integral of the Henstock-Kurzweil-Stieltjes type.