Page 1 Next

Displaying 1 – 20 of 29

Showing per page

Hamilton’s Principle with Variable Order Fractional Derivatives

Atanackovic, Teodor, Pilipovic, Stevan (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 70H25, 46F12, 34K37 Dedicated to 80-th birthday of Prof. Rudolf GorenfloWe propose a generalization of Hamilton’s principle in which the minimization is performed with respect to the admissible functions and the order of the derivation. The Euler–Lagrange equations for such minimization are derived. They generalize the classical Euler-Lagrange equation. Also, a new variational problem is formulated in the case when the order of the derivative is defined through a constitutive equation....

Heat kernel estimates for critical fractional diffusion operators

Longjie Xie, Xicheng Zhang (2014)

Studia Mathematica

We construct the heat kernel of the 1/2-order Laplacian perturbed by a first-order gradient term in Hölder spaces and a zero-order potential term in a generalized Kato class, and obtain sharp two-sided estimates as well as a gradient estimate of the heat kernel, where the proof of the lower bound is based on a probabilistic approach.

Henstock-Kurzweil and McShane product integration; descriptive definitions

Antonín Slavík, Štefan Schwabik (2008)

Czechoslovak Mathematical Journal

The Henstock-Kurzweil and McShane product integrals generalize the notion of the Riemann product integral. We study properties of the corresponding indefinite integrals (i.e. product integrals considered as functions of the upper bound of integration). It is shown that the indefinite McShane product integral of a matrix-valued function A is absolutely continuous. As a consequence we obtain that the McShane product integral of A over [ a , b ] exists and is invertible if and only if A is Bochner integrable...

Hereditarily Hurewicz spaces and Arhangel'skii sheaf amalgamations

Boaz Tsaban, Lubomyr Zdomsky (2012)

Journal of the European Mathematical Society

A classical theorem of Hurewicz characterizes spaces with the Hurewicz covering property as those having bounded continuous images in the Baire space. We give a similar characterization for spaces X which have the Hurewicz property hereditarily. We proceed to consider the class of Arhangel’skii α 1 spaces, for which every sheaf at a point can be amalgamated in a natural way. Let C p ( X ) denote the space of continuous real-valued functions on X with the topology of pointwise convergence. Our main result...

Hölder functions in Bergman type spaces

Yingwei Chen, Guangbin Ren (2012)

Studia Mathematica

It seems impossible to extend the boundary value theory of Hardy spaces to Bergman spaces since there is no boundary value for a function in a Bergman space in general. In this article we provide a new idea to show what is the correct version of Bergman spaces by demonstrating the extension to Bergman spaces of a result of Hardy-Littlewood in Hardy spaces, which characterizes the Hölder class of boundary values for a function from Hardy spaces in the unit disc in terms of the growth of its derivative....

Currently displaying 1 – 20 of 29

Page 1 Next