The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that the set of asymptotic critical values of a function definable in an o-minimal structure is finite, even if the structure is not polynomially bounded. As a consequence, the function is a locally trivial fibration over the complement of this set.
We obtain improved regularity of homeomorphic solutions of the reduced Beltrami equation, as compared to the standard Beltrami equation. Such an improvement is not possible in terms of Hölder or Sobolev regularity; instead, our results concern the generalized variation of restrictions to lines. Specifically, we prove that the restriction to any line segment has finite p-variation for all p > 1 but not necessarily for p = 1.
We study the integrability of Banach space valued strongly measurable functions defined on . In the case of functions given by , where are points of a Banach space and the sets are Lebesgue measurable and pairwise disjoint subsets of , there are well known characterizations for Bochner and Pettis integrability of . The function is Bochner integrable if and only if the series is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of ....
We study properties of variational measures associated with certain conditionally convergent integrals in . In particular we give a full descriptive characterization of these integrals.
Some properties of absolutely continuous variational measures associated with local systems of sets are established. The classes of functions generating such measures are described. It is shown by constructing an example that there exists a -adic path system that defines a differentiation basis which does not possess Ward property.
This paper is a sequel to papers by Ash, Erdős and Rubel, on very slowly varying functions, and by Bingham and Ostaszewski, on foundations of regular variation. We show that generalizations of the Ash-Erdős-Rubel approach-imposing growth restrictions on the function h, rather than regularity conditions such as measurability or the Baire property-lead naturally to the main result of regular variation, the Uniform Convergence Theorem.
A new approach to differentiation on a time scale is presented. We give a suitable generalization of the Vitali Lemma and apply it to prove that every increasing function f: → ℝ has a right derivative f₊’(x) for -almost all x ∈ . Moreover, .
In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.
Currently displaying 1 –
19 of
19