The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Inverse Function Theorems and Jacobians over Metric Spaces

Luca Granieri (2014)

Analysis and Geometry in Metric Spaces

We present inversion results for Lipschitz maps f : Ω ⊂ ℝN → (Y, d) and stability of inversion for uniformly convergent sequences. These results are based on the Area Formula and on the l.s.c. of metric Jacobians.

Iterated quasi-arithmetic mean-type mappings

Paweł Pasteczka (2016)

Colloquium Mathematicae

We work with a fixed N-tuple of quasi-arithmetic means M , . . . , M N generated by an N-tuple of continuous monotone functions f , . . . , f N : I (I an interval) satisfying certain regularity conditions. It is known [initially Gauss, later Gustin, Borwein, Toader, Lehmer, Schoenberg, Foster, Philips et al.] that the iterations of the mapping I N b ( M ( b ) , . . . , M N ( b ) ) tend pointwise to a mapping having values on the diagonal of I N . Each of [all equal] coordinates of the limit is a new mean, called the Gaussian product of the means M , . . . , M N taken on b. We effectively...

Currently displaying 1 – 4 of 4

Page 1