Continuity of monotone functions
It is shown that a monotone function acting between euclidean spaces and is continuous almost everywhere with respect to the Lebesgue measure on .
It is shown that a monotone function acting between euclidean spaces and is continuous almost everywhere with respect to the Lebesgue measure on .
Let the spaces and be ordered by cones and respectively, let be a nonempty subset of , and let be an order-preserving function. Suppose that is generating in , and that contains no affine line. Then is locally bounded on the interior of , and continuous almost everywhere with respect to the Lebesgue measure on . If in addition is a closed halfspace and if is connected, then is continuous if and only if the range is connected.
We prove that if for certain values of , then
The purpose of this note is to provide characterizations of operator convexity and give an alternative proof of a two-dimensional analogue of a theorem of Löwner concerning operator monotonicity.
We reduce the convolution of radius functions to that of 1-variable functions. Then we present formulas for computing convolutions of an abstract radius function on ℝ³ with various integral kernels - given by elementary or discontinuous functions. We also prove a theorem on the asymptotic behaviour of a convolution at infinity. Lastly, we deduce some estimates which enable us to find the asymptotics of the velocity and pressure of a fluid (described by the Navier-Stokes equations) in the boundary...