Displaying 601 – 620 of 689

Showing per page

The Lukacs-Olkin-Rubin theorem without invariance of the "quotient"

Konstancja Bobecka, Jacek Wesołowski (2002)

Studia Mathematica

The Lukacs theorem is one of the most brilliant results in the area of characterizations of probability distributions. First, because it gives a deep insight into the nature of independence properties of the gamma distribution; second, because it uses beautiful and non-trivial mathematics. Originally it was proved for probability distributions concentrated on (0,∞). In 1962 Olkin and Rubin extended it to matrix variate distributions. Since that time it has been believed that the fundamental reason...

The Lusin Theorem and Horizontal Graphs in the Heisenberg Group

Piotr Hajłasz, Jacob Mirra (2013)

Analysis and Geometry in Metric Spaces

In this paper we prove that every collection of measurable functions fα , |α| = m, coincides a.e. withmth order derivatives of a function g ∈ Cm−1 whose derivatives of order m − 1 may have any modulus of continuity weaker than that of a Lipschitz function. This is a stronger version of earlier results of Lusin, Moonens-Pfeffer and Francos. As an application we construct surfaces in the Heisenberg group with tangent spaces being horizontal a.e.

The McShane, PU and Henstock integrals of Banach valued functions

Luisa Di Piazza, Valeria Marraffa (2002)

Czechoslovak Mathematical Journal

Some relationships between the vector valued Henstock and McShane integrals are investigated. An integral for vector valued functions, defined by means of partitions of the unity (the PU-integral) is studied. In particular it is shown that a vector valued function is McShane integrable if and only if it is both Pettis and PU-integrable. Convergence theorems for the Henstock variational and the PU integrals are stated. The families of multipliers for the Henstock and the Henstock variational integrals...

Two classes of Darboux-like, Baire one functions of two variables

Michael J. Evans, Paul D. Humke (2010)

Czechoslovak Mathematical Journal

Among the many characterizations of the class of Baire one, Darboux real-valued functions of one real variable, the 1907 characterization of Young and the 1997 characterization of Agronsky, Ceder, and Pearson are particularly intriguing in that they yield interesting classes of functions when interpreted in the two-variable setting. We examine the relationship between these two subclasses of the real-valued Baire one defined on the unit square.

Currently displaying 601 – 620 of 689