Previous Page 6

Displaying 101 – 112 of 112

Showing per page

Approximate and L p Peano derivatives of nonintegral order

J. Marshall Ash, Hajrudin Fejzić (2005)

Studia Mathematica

Let n be a nonnegative integer and let u ∈ (n,n+1]. We say that f is u-times Peano bounded in the approximate (resp. L p , 1 ≤ p ≤ ∞) sense at x m if there are numbers f α ( x ) , |α| ≤ n, such that f ( x + h ) - | α | n f α ( x ) h α / α ! is O ( h u ) in the approximate (resp. L p ) sense as h → 0. Suppose f is u-times Peano bounded in either the approximate or L p sense at each point of a bounded measurable set E. Then for every ε > 0 there is a perfect set Π ⊂ E and a smooth function g such that the Lebesgue measure of E∖Π is less than ε and f = g on Π....

Approximations and error bounds for computing the inverse mapping

Lucas Jódar, Enrique Ponsoda, G. Rodríguez Sánchez (1997)

Applications of Mathematics

In this paper we propose a procedure to construct approximations of the inverse of a class of 𝒞 m differentiable mappings. First of all we determine in terms of the data a neighbourhood where the inverse mapping is well defined. Then it is proved that the theoretical inverse can be expressed in terms of the solution of a differential equation depending on parameters. Finally, using one-step matrix methods we construct approximate inverse mappings of a prescribed accuracy.

Area functionals and Godbillon-Vey cocycles

Takashi Tsuboi (1992)

Annales de l'institut Fourier

We investigate the natural domain of definition of the Godbillon-Vey 2- dimensional cohomology class of the group of diffeomorphisms of the circle. We introduce the notion of area functionals on a space of functions on the circle, we give a sufficiently large space of functions with nontrivial area functional and we give a sufficiently large group of Lipschitz homeomorphisms of the circle where the Godbillon-Vey class is defined.

Associative n -dimensional copulas

Andrea Stupňanová, Anna Kolesárová (2011)

Kybernetika

The associativity of n -dimensional copulas in the sense of Post is studied. These copulas are shown to be just n -ary extensions of associative 2-dimensional copulas with special constraints, thus they solve an open problem of R. Mesiar posed during the International Conference FSTA 2010 in Liptovský Ján, Slovakia.

Automatic differentiation platform : design

Christèle Faure (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Automatic differentiation (AD) has proven its interest in many fields of applied mathematics, but it is still not widely used. Furthermore, existing numerical methods have been developed under the hypotheses that computing program derivatives is not affordable for real size problems. Exact derivatives have therefore been avoided, or replaced by approximations computed by divided differences. The hypotheses is no longer true due to the maturity of AD added to the quick evolution of machine capacity....

Automatic Differentiation Platform: Design

Christèle Faure (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Automatic differentiation (AD) has proven its interest in many fields of applied mathematics, but it is still not widely used. Furthermore, existing numerical methods have been developed under the hypotheses that computing program derivatives is not affordable for real size problems. Exact derivatives have therefore been avoided, or replaced by approximations computed by divided differences. The hypotheses is no longer true due to the maturity of AD added to the quick evolution of machine capacity....

Currently displaying 101 – 112 of 112

Previous Page 6