Moser's Inequality for a class of integral operators
Let 1 < p < ∞, q = p/(p-1) and for define , x > 0. Moser’s Inequality states that there is a constant such that where is the unit ball of . Moreover, the value a = 1 is sharp. We observe that f where the integral operator has a simple kernel K. We consider the question of for what kernels K(t,x), 0 ≤ t, x < ∞, this result can be extended, and proceed to discuss this when K is non-negative and homogeneous of degree -1. A sufficient condition on K is found for the analogue...