On the Limits of Simple Means.
For a Lebesgue integrable complex-valued function defined on let be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that as . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of there is a definite rate at which the Walsh-Fourier transform tends to zero. We...
The properties of rare maximal functions (i.e. Hardy-Littlewood maximal functions associated with sparse families of intervals) are investigated. A simple criterion allows one to decide if a given rare maximal function satisfies a converse weak type inequality. The summability properties of rare maximal functions are also considered.