Displaying 741 – 760 of 1036

Showing per page

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends to zero. We...

On weak type inequalities for rare maximal functions

K. Hare, A. Stokolos (2000)

Colloquium Mathematicae

The properties of rare maximal functions (i.e. Hardy-Littlewood maximal functions associated with sparse families of intervals) are investigated. A simple criterion allows one to decide if a given rare maximal function satisfies a converse weak type inequality. The summability properties of rare maximal functions are also considered.

Currently displaying 741 – 760 of 1036