Displaying 361 – 380 of 1525

Showing per page

Critères de convexité et inégalités intégrales

Serge Dubuc (1977)

Annales de l'institut Fourier

Pour trois fonctions non-négatives intégrables sur R n , f , g et h , telles que ( h ( x + y ) ) - 1 / n ( f ( x ) ) - 1 / n + ( g ( y ) ) - 1 / n , Borelll a établi l’inégalité h ( z ) d z min f ( x ) d x , g ( y ) d y ) . Nous déterminons les conditions précises où l’inégalité sera stricte. La clef de cette analyse est une nouvelle caractérisation des fonctions convexes mesurables.

Direct and Reverse Gagliardo-Nirenberg Inequalities from Logarithmic Sobolev Inequalities

Matteo Bonforte, Gabriele Grillo (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

We investigate the connection between certain logarithmic Sobolev inequalities and generalizations of Gagliardo-Nirenberg inequalities. A similar connection holds between reverse logarithmic Sobolev inequalities and a new class of reverse Gagliardo-Nirenberg inequalities.

Distribution and rearrangement estimates of the maximal function and interpolation

Irina Asekritova, Natan Krugljak, Lech Maligranda, Lars-Erik Persson (1997)

Studia Mathematica

There are given necessary and sufficient conditions on a measure dμ(x)=w(x)dx under which the key estimates for the distribution and rearrangement of the maximal function due to Riesz, Wiener, Herz and Stein are valid. As a consequence, we obtain the equivalence of the Riesz and Wiener inequalities which seems to be new even for the Lebesgue measure. Our main tools are estimates of the distribution of the averaging function f** and a modified version of the Calderón-Zygmund decomposition. Analogous...

Currently displaying 361 – 380 of 1525