Note on a theorem by Reshetnyak-Gurov
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Ingemar Wik (1987)
Studia Mathematica
Alzer, H. (1995)
Acta Mathematica Universitatis Comenianae. New Series
Jiang, Wei-Dong (2009)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Culjak, V. (2008)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Bougoffa, Lazhar (2007)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Zabandan, Gholamreza (2008)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Chen, Yin, Kimball, John (2006)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Frappier, Clément (2004)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Trif, Tiberiu (2005)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Vukelić, A. (2005)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Pečarić, J., Pejković, T. (2004)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Z. Ditzian (1977)
Aequationes mathematicae
Kim, Sung Guen (1995)
International Journal of Mathematics and Mathematical Sciences
Liu, Zheng (2005)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Liu, Wen-Jun, Li, Chun-Cheng, Dong, Jian-Wei (2006)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Josip E. Pečarić (1982)
Publications de l'Institut Mathématique
Klaričić Bakula, M., Pečarić, J. (2004)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Horst Alzer (1994)
Commentationes Mathematicae Universitatis Carolinae
We prove: If and denote the arithmetic and geometric means of the first positive integers, then the sequence is strictly increasing and converges...
Nguyen, Thanh Long, Nguyen, Vu Duy Linh, Nguyen, Thi Thu Van (2003)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Robert Černý (2012)
Open Mathematics
Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the...