Mean value theorems for some linear integral operators.
We analyse mean values of functions with values in the boundary of a convex two-dimensional set. As an application, reverse integral inequalities imply exactly the same inequalities for the monotone rearrangement. Sharp versions of the classical Gehring lemma, the Gurov-Resetnyak theorem and the Muckenhoupt theorem are obtained.
For a differentiable function where is a real interval and , a counterpart of the Lagrange mean-value theorem is presented. Necessary and sufficient conditions for the existence of a mean such that are given. Similar considerations for a theorem accompanying the Lagrange mean-value theorem are presented.
We investigate the problem of approximation of measurable multifunctions by monotone sequences of measurable simple ones. Our main tool is the Marczewski function, i.e., the characteristic function of a sequence of sets.
The author gives a new simple proof of monotonicity of the generalized extended mean values introduced by F. Qi.
A brief account of the connections between Carathéodory multifunctions, Scorza-Dragoni multifunctions, product-measurable multifunctions, and superpositionally measurable multifunctions of two variables is given.
The main purpose is the introduction of an integral which covers most of the recent integrals which use fuzzy measures instead of measures. Before we give our framework for a fuzzy integral we motivate and present in a first part structure- and representation theorems for generalized additions and generalized multiplications which are connected by a strong and a weak distributivity law, respectively.
Let Ω be an open subset of a real Banach space E and, for 1 ≤ m ≤, let Cm(Ω) denote the algebra of all m-times continuously Fréchet differentiable real functions defined on Ω. We are concerned here with the question as to wether every nonzero algebra homomorphism φ: Cm(Ω) → R is given by evaluation at some point of Ω, i.e., if there exists some a ∈ Ω such that φ(f) = f(a) for each f ∈ Cm(Ω). This problem has been considered in [1,4,5] and [6]. In [6], a positive answer is given in the case that...
We give a state-of-the-art survey of investigations concerning multivariate polynomial inequalities. A satisfactory theory of such inequalities has been developed due to applications of both the Gabrielov-Hironaka-Łojasiewicz subanalytic geometry and pluripotential methods based on the complex Monge-Ampère operator. Such an approach permits one to study various inequalities for polynomials restricted not only to nice (nonpluripolar) compact subsets of ℝⁿ or ℂⁿ but also their versions for pieces...