Displaying 21 – 40 of 79

Showing per page

On convex and *-concave multifunctions

Bożena Piątek (2005)

Annales Polonici Mathematici

A continuous multifunction F:[a,b] → clb(Y) is *-concave if and only if the inclusion 1 / ( t - s ) s t F ( x ) d x ( F ( s ) * + F ( t ) ) / 2 holds for every s,t ∈ [a,b], s < t.

On derivo-periodic multifunctions

Libor Jüttner (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The problem of linearity of a multivalued derivative and consequently the problem of necessary and sufficient conditions for derivo-periodic multifunctions are investigated. The notion of a derivative of multivalued functions is understood in various ways. Advantages and disadvantages of these approaches are discussed.

On gradients of functions definable in o-minimal structures

Krzysztof Kurdyka (1998)

Annales de l'institut Fourier

We prove the o-minimal generalization of the Łojasiewicz inequality grad f | f | α , with α &lt; 1 , in a neighborhood of a , where f is real analytic at a and f ( a ) = 0 . We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.

On granular derivatives and the solution of a granular initial value problem

Ildar Batyrshin (2002)

International Journal of Applied Mathematics and Computer Science

Perceptions about function changes are represented by rules like “If X is SMALL then Y is QUICKLY INCREASING.” The consequent part of a rule describes a granule of directions of the function change when X is increasing on the fuzzy interval given in the antecedent part of the rule. Each rule defines a granular differential and a rule base defines a granular derivative. A reconstruction of a fuzzy function given by the granular derivative and the initial value given by the rule is similar to Euler’s...

On models of long-term behavior of concrete

Chleboun, Jan, Dohnalová, Lenka, Runcziková, Judita (2021)

Programs and Algorithms of Numerical Mathematics

Long-term behavior of concrete is modeled by several widely accepted models, such as B3, fib MC 2010, or ACI 209 whose input parameters and output values are not identical to each other. Moreover, the input and, consequently, the output values are uncertain. In this paper, fuzzy input parameters are considered in uncertainty quantification of each model response and, finally, the sets of responses are analyzed by elementary tools of evidence theory. That is, belief and plausibility functions are...

On nuclear maps between spaces of ultradiferentiables jets of Roumieu type.

Jean Schmets, Manuel Valdivia (2003)

RACSAM

Si K es un compacto no vacío en Rr, damos una condición suficiente para que la inyección canónica de ε{M},b(K) en ε{M},d(K) sea nuclear. Consideramos el caso mixto y obtenemos la existencia de un operador de extensión nuclear de ε{M1}(F)A en ε{M2}(Rr)D donde F es un subconjunto cerrado propio de Rr y A y D son discos de Banach adecuados. Finalmente aplicamos este último resultado al caso Borel, es decir cuando F = {0}.

On selections of multifunctions

Milan Matejdes (1993)

Mathematica Bohemica

The purpose of this paper is to introduce a definition of cliquishness for multifunctions and to study the search for cliquish, quasi-continuous and Baire measurable selections of compact valued multifunctions. A correction as well as a generalization of the results of [5] are given.

On sets of non-differentiability of Lipschitz and convex functions

Luděk Zajíček (2007)

Mathematica Bohemica

We observe that each set from the system 𝒜 ˜ (or even 𝒞 ˜ ) is Γ -null; consequently, the version of Rademacher’s theorem (on Gâteaux differentiability of Lipschitz functions on separable Banach spaces) proved by D. Preiss and the author is stronger than that proved by D. Preiss and J. Lindenstrauss. Further, we show that the set of non-differentiability points of a convex function on n is σ -strongly lower porous. A discussion concerning sets of Fréchet non-differentiability points of continuous convex...

On solutions set of a multivalued stochastic differential equation

Marek T. Malinowski, Ravi P. Agarwal (2017)

Czechoslovak Mathematical Journal

We analyse multivalued stochastic differential equations driven by semimartingales. Such equations are understood as the corresponding multivalued stochastic integral equations. Under suitable conditions, it is shown that the considered multivalued stochastic differential equation admits at least one solution. Then we prove that the set of all solutions is closed and bounded.

Currently displaying 21 – 40 of 79