Dérivation de mesures à valeurs vectorielles
Maurice Sion (1974/1975)
Séminaire Choquet. Initiation à l'analyse
Jacques Gapaillard (1974)
Manuscripta mathematica
C.A. Hayes (1972)
Journal für die reine und angewandte Mathematik
Herry Pribawanto Suryawan (2019)
Mathematica Bohemica
We prove that derivatives of any finite order of Donsker's delta functionals are well-defined elements in the space of Hida distributions. We also show the convergence to the derivative of Donsker's delta functionals of two different approximations. Finally, we present an existence result of finite product and infinite series of the derivative of the Donsker delta functionals.
Szymon Głąb, Filip Strobin (2010)
Open Mathematics
We prove that density preserving homeomorphisms form a Π11-complete subset in the Polish space ℍ of all increasing autohomeomorphisms of unit interval.
Petr Holický, Václav Komínek (2007)
Czechoslovak Mathematical Journal
We relate some subsets of the product of nonseparable Luzin (e.g., completely metrizable) spaces to subsets of in a way which allows to deduce descriptive properties of from corresponding theorems on . As consequences we prove a nonseparable version of Kondô’s uniformization theorem and results on sets of points in with particular properties of fibres of a mapping . Using these, we get descriptions of bimeasurable mappings between nonseparable Luzin spaces in terms of fibres.
Ondřej F. K. Kalenda, Matias Raja (2003)
Acta Universitatis Carolinae. Mathematica et Physica
Szymon Gła̧b (2009)
Open Mathematics
Let (ℝ) stand for the hyperspace of all nonempty compact sets on the real line and let d ±(x;E) denote the (right- or left-hand) Lebesgue density of a measurable set E ⊂ ℝ at a point x∈ ℝ. In [3] it was proved that is ⊓11-complete. In this paper we define an abstract density operator ⅅ± and we generalize the above result. Some applications are included.
Jan K. Pachl (1978)
Mathematica Scandinavica
L. Schwartz (1971/1972)
Séminaire Équations aux dérivées partielles (Polytechnique)
Jean Saint-Pierre (1975)
Annales de l'I.H.P. Probabilités et statistiques
L. Schwartz (1971/1972)
Séminaire Équations aux dérivées partielles (Polytechnique)
Laurent Schwartz (1974)
Revista colombiana de matematicas
Stephen Simons (1975/1976)
Séminaire Choquet. Initiation à l'analyse
Zbigniew Grande (1979)
Colloquium Mathematicae
Miloslav Jůza (1978)
Časopis pro pěstování matematiky
Anne Bertrand-Mathis (1986)
Bulletin de la Société Mathématique de France
Imre Z. Ruzsa (1991)
Monatshefte für Mathematik
Szymon Głąb, Filip Strobin (2013)
Czechoslovak Mathematical Journal
Jachymski showed that the set is either a meager subset of or is equal to . In the paper we generalize this result by considering more general spaces than , namely , the space of all continuous functions which vanish at infinity, and , the space of all continuous bounded functions. Moreover, we replace the meagerness by -porosity.
Hans Weber (1982)
Studia Mathematica