On Measurability of Uncountable Unions of Measurable Sets
Let be a Polish ideal space and let be any set. We show that under some conditions on a relation it is possible to find a set such that is completely -nonmeasurable, i.e, it is -nonmeasurable in every positive Borel set. We also obtain such a set simultaneously for continuum many relations Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.
Given a set X, a countable group H acting on it and a σ-finite H-invariant measure m on X, we study conditions which imply that each selector of H-orbits is nonmeasurable with respect to any H-invariant extension of m.
Steinhaus [9] prove that if a set has a positive Lebesgue measure in the line then its distance set contains an interval. He obtained even stronger forms of this result in [9], which are concerned with mutual distances between points in an infinite sequence of sets. Similar theorems in the case we replace distance by mutual ratio were established by Bose-Majumdar [1]. In the present paper, we endeavour to obtain some results related to sets with Baire property in locally compact topological spaces,...
Let T 1 and T 2 be topologies defined on the same set X and let us say that (X, T 1) and (X, T 2) are similar if the families of sets which have nonempty interior with respect to T 1 and T 2 coincide. The aim of the paper is to study how similar topologies are related with each other.