Borel sets of exact class
We prove that every (extended) Borel subset E of X × Y, where X is complete metric and Y is Polish, can be covered by countably many extended Borel sets with compact sections if the sections , x ∈ X, are σ-compact. This is a nonseparable version of a theorem of Saint Raymond. As a by-product, we get a proof of Saint Raymond’s result which does not use transfinite induction.
Conditions are given which enable or disable a complex space to be mapped biholomorphically onto a bounded closed analytic subset of a Banach space. They involve on the one hand the Radon-Nikodym property and on the other hand the completeness of the Caratheodory metric of .
A hull of A ⊆ [0,1] is a set H containing A such that λ*(H) = λ*(A). We investigate all four versions of the following problem. Does there exist a monotone (with respect to inclusion) map that assigns a Borel/ hull to every negligible/measurable subset of [0,1]? Three versions turn out to be independent of ZFC, while in the fourth case we only prove that the nonexistence of a monotone hull operation for all measurable sets is consistent. It remains open whether existence here is also consistent....
Let X be an arbitrary metric space and P be a porosity-like relation on X. We describe an infinite game which gives a characterization of σ-P-porous sets in X. This characterization can be applied to ordinary porosity above all but also to many other variants of porosity.
We construct a Choquet simplex whose set of extreme points is -analytic, but is not a -Borel set. The set has the surprising property of being a set in its Stone-Cech compactification. It is hence an example of a set that is not absolute.