Affine Invariant -systems
This paper deals with approximation numbers of the compact trace operator of an anisotropic Besov space into some Lp-space,trΓ: Bpps,a (Rn) → Lp(Γ), s > 0, 1 < p < ∞,where Γ is an anisotropic d-set, 0 < d < n. We also prove homogeneity estimates, a homogeneous equivalent norm and the localization property in Bpps,a.
Our goal is to study Pascal-Sierpinski gaskets, which are certain fractal sets defined in terms of divisibility of entries in Pascal's triangle. The principal tool is a carry rule for the addition of the base-q representation of coordinates of points in the unit square. In the case that q = p is prime, we connect the carry rule to the power of p appearing in the prime factorization of binomial coefficients. We use the carry rule to define a family of fractal subsets Bqr of the unit square, and we...
The atomic surfaces of unimodular Pisot substitutions of irreducible type have been studied by many authors. In this article, we study the atomic surfaces of Pisot substitutions of reducible type.As an analogue of the irreducible case, we define the stepped-surface and the dual substitution over it. Using these notions, we give a simple proof to the fact that atomic surfaces form a self-similar tiling system. We show that the stepped-surface possesses the quasi-periodic property, which implies that...
Le cadre de cet article est celui des groupes et des espaces hyperboliques de M. Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...
On explicite une conjugaison en mesure entre le décalage sur le système dynamique associé à une substitution primitive et une transformation adique sur le support d'un sous-shift de type fini, à savoir l'ensemble des chemins d'un automate dit des préfixes-suffixes. En caractérisant les préimages par la conjugaison des chemins périodiques de l'automate, on montre que cette conjugaison est injective sauf sur un ensemble dénombrable, sur lequel elle est finie-à-un. On en déduit l'existence d'une suite...