Displaying 41 – 60 of 126

Showing per page

Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations

Michel Talagrand (1982)

Annales de l'institut Fourier

Let G be a locally compact group. Let L t be the left translation in L ( G ) , given by L t f ( x ) = f ( t x ) . We characterize (undre a mild set-theoretical hypothesis) the functions f L ( G ) such that the map t L t f from G into L ( G ) is scalarly measurable (i.e. for φ L ( G ) * , t φ ( L t f ) is measurable). We show that it is the case when t θ ( L f t ) is measurable for each character θ , and if G is compact, if and only if f is Riemann-measurable. We show that t L t f is Borel measurable if and only if f is left uniformly continuous.Some of the measure-theoretic tools used there...

Coarea integration in metric spaces

Malý, Jan (2003)

Nonlinear Analysis, Function Spaces and Applications

Let X be a metric space with a doubling measure, Y be a boundedly compact metric space and u : X Y be a Lebesgue precise mapping whose upper gradient g belongs to the Lorentz space L m , 1 , m 1 . Let E X be a set of measure zero. Then ^ m ( E u - 1 ( y ) ) = 0 for m -a.e. y Y , where m is the m -dimensional Hausdorff measure and ^ m is the m -codimensional Hausdorff measure. This property is closely related to the coarea formula and implies a version of the Eilenberg inequality. The result relies on estimates of Hausdorff content of level sets...

Comment on "On some statistical paradoxes and non-conglomerability" by Bruce Hill.

Isaac Levi (1981)

Trabajos de Estadística e Investigación Operativa

Those who follow Harold Jeffreys in using improper priors together with likelihoods to determine posteriors have thought of the improper measures as probability measures of a deviant sort. This is a mistake. Probability measures are finite measures. Improper distributions generate σ-finite measures. (...)

Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric.

Zoltán M. Balogh, Matthieu Rickly, Francesco Serra Cassano (2003)

Publicacions Matemàtiques

We compare the Hausdorff measures and dimensions with respect to the Euclidean and Heisenberg metrics on the first Heisenberg group. The result is a dimension jump described by two inequalities. The sharpness of our estimates is shown by examples. Moreover a comparison between Euclidean and H-rectifiability is given.

Currently displaying 41 – 60 of 126