Displaying 841 – 860 of 2107

Showing per page

Involutivity degree of a distribution at superdensity points of its tangencies

Silvano Delladio (2021)

Archivum Mathematicum

Let Φ 1 , ... , Φ k + 1 (with k 1 ) be vector fields of class C k in an open set U N + m , let 𝕄 be a N -dimensional C k submanifold of U and define 𝕋 : = { z 𝕄 : Φ 1 ( z ) , ... , Φ k + 1 ( z ) T z 𝕄 } where T z 𝕄 is the tangent space to 𝕄 at z . Then we expect the following property, which is obvious in the special case when z 0 is an interior point (relative to 𝕄 ) of 𝕋 : If z 0 𝕄 is a ( N + k ) -density point (relative to 𝕄 ) of 𝕋 then all the iterated Lie brackets of order less or equal to k ...

Irreducible Markov systems on Polish spaces

Katarzyna Horbacz, Tomasz Szarek (2006)

Studia Mathematica

Contractive Markov systems on Polish spaces which arise from graph directed constructions of iterated function systems with place dependent probabilities are considered. It is shown that their stability may be studied using the concentrating methods developed by the second author [Dissert. Math. 415 (2003)]. In this way Werner's results obtained in a locally compact case [J. London Math. Soc. 71 (2005)] are extended to a noncompact setting.

Iterated function systems with a weak separation condition

Ka-Sing Lau, Xiang-Yang Wang (2004)

Studia Mathematica

Nonoverlapping contractive self-similar iterated function systems (IFS) have been studied in great detail via the open set condition. On the other hand much less is known about IFS with overlaps. To deal with such systems, a weak separation condition (WSC) has been introduced recently [LN1]; it is weaker than the open set condition and it includes many important overlapping cases. This paper has two purposes. First, we consider the class of self-similar measures generated by such IFS; we give a...

Józef Marcinkiewicz (1910-1940) - on the centenary of his birth

Lech Maligranda (2011)

Banach Center Publications

Józef Marcinkiewicz’s (1910-1940) name is not known by many people, except maybe a small group of mathematicians, although his influence on the analysis and probability theory of the twentieth century was enormous. This survey of his life and work is in honour of the 100 t h anniversary of his birth and 70 t h anniversary of his death. The discussion is divided into two periods of Marcinkiewicz’s life. First, 1910-1933, that is, from his birth to his graduation from the University of Stefan Batory in Vilnius,...

Kadec norms and Borel sets in a Banach space

M. Raja (1999)

Studia Mathematica

We introduce a property for a couple of topologies that allows us to give simple proofs of some classic results about Borel sets in Banach spaces by Edgar, Schachermayer and Talagrand as well as some new results. We characterize the existence of Kadec type renormings in the spirit of the new results for LUR spaces by Moltó, Orihuela and Troyanski.

Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpinski et morphismes de monoïde

Gabrielle Allouche, Jean-Paul Allouche, Jeffrey Shallit (2006)

Annales de l’institut Fourier

Nous montrons que le tracé d’un kolam indien classique, que l’on retrouve aussi dans la tradition des dessins sur le sable aux îles Vanuatu, peut être engendré par un morphisme de monoïde. La suite infinie morphique ainsi obtenue est reliée à la célèbre suite de Prouhet-Thue-Morse, mais elle n’est k -automatique pour aucun entier k 1 .

KPZ formula for log-infinitely divisible multifractal random measures

Rémi Rhodes, Vincent Vargas (2011)

ESAIM: Probability and Statistics

We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [E. Bacry et al. Comm. Math. Phys. 236 (2003) 449–475]. If M is a non degenerate multifractal measure with associated metric ρ(x,y) = M([x,y]) and structure function ζ, we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimHρ with respect to ρ of the same set: ζ(dimHρ(K)) = dimH(K). Our results can...

KPZ formula for log-infinitely divisible multifractal random measures

Rémi Rhodes, Vincent Vargas (2012)

ESAIM: Probability and Statistics

We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [E. Bacry et al. Comm. Math. Phys.236 (2003) 449–475]. If M is a non degenerate multifractal measure with associated metric ρ(x,y) = M([x,y]) and structure function ζ, we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimHρ with respect to ρ of the same set: ζ(dimHρ(K)) = dimH(K). Our results can...

Currently displaying 841 – 860 of 2107