Local Lyapunov exponents and a local estimate of Hausdorff dimension
We give a sufficient condition for a curve to ensure that the -dimensional Hausdorff measure restricted to is locally monotone.
We prove that the 1-dimensional Hausdorff measure restricted to a simple real analytic curve , , is locally 1-monotone.
Let be a family of Hölder continuous functions and let be a conformal iterated function system. Lindsay and Mauldin’s paper [Nonlinearity 15 (2002)] left an open question whether the lower quantization coefficient for the F-conformal measure on a conformal iterated funcion system satisfying the open set condition is positive. This question was positively answered by Zhu. The goal of this paper is to present a different proof of this result.
Lower semicontinuity results are obtained for multiple integrals of the kind , where is a given positive measure on , and the vector-valued function belongs to the Sobolev space associated with . The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to . More precisely, for fully general , a notion of quasiconvexity for along the tangent bundle to , turns out to be necessary for lower...
Lower semicontinuity results are obtained for multiple integrals of the kind , where μ is a given positive measure on , and the vector-valued function u belongs to the Sobolev space associated with μ. The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to μ. More precisely, for fully general μ, a notion of quasiconvexity for f along the tangent bundle to μ, turns out to be necessary for lower...
A theorem of Lusin states that every Borel function onRis equal almost everywhere to the derivative of a continuous function. This result was later generalized to Rn in works of Alberti and Moonens-Pfeffer. In this note, we prove direct analogs of these results on a large class of metric measure spaces, those with doubling measures and Poincaré inequalities, which admit a form of differentiation by a famous theorem of Cheeger.
Talagrand's proof of the sufficiency of existence of a majorizing measure for the sample boundedness of processes with bounded increments used a contraction from a certain ultrametric space. We give a short proof of existence of such an ultrametric using admissible sequences of nets.
The paper contains some sufficient conditions for Marczewski-Burstin representability of an algebra 𝓐 of sets which is isomorphic to 𝓟(X) for some X. We characterize those algebras of sets which are inner MB-representable and isomorphic to a power set. We consider connections between inner MB-representability and hull property of an algebra isomorphic to 𝓟 (X) and completeness of an associated quotient algebra. An example of an infinite universally MB-representable algebra is given.
ℒ denotes the Lebesgue measurable subsets of ℝ and denotes the sets of Lebesgue measure 0. In 1914 Burstin showed that a set M ⊆ ℝ belongs to ℒ if and only if every perfect P ∈ ℒ$ℒ0 which is a subset of or misses M (a similar statement omitting “is a subset of or” characterizes ). In 1935, Marczewski used similar language to define the σ-algebra (s) which we now call the “Marczewski measurable sets” and the σ-ideal which we call the “Marczewski null sets”. M ∈ (s) if every perfect set P has...