Displaying 81 – 100 of 110

Showing per page

Möbius fitting aggregation operators

Anna Kolesárová (2002)

Kybernetika

Standard Möbius transform evaluation formula for the Choquet integral is associated with the 𝐦𝐢𝐧 -aggregation. However, several other aggregation operators replacing 𝐦𝐢𝐧 operator can be applied, which leads to a new construction method for aggregation operators. All binary operators applicable in this approach are characterized by the 1-Lipschitz property. Among ternary aggregation operators all 3-copulas are shown to be fitting and moreover, all fitting weighted means are characterized. This new method...

Multidimensional Models for Methodological Validation in Multifractal Analysis

R. Lopes, I. Bhouri, S. Maouche, P. Dubois, M. H. Bedoui, N. Betrouni (2008)

Mathematical Modelling of Natural Phenomena

Multifractal analysis is known as a useful tool in signal analysis. However, the methods are often used without methodological validation. In this study, we present multidimensional models in order to validate multifractal analysis methods.

Multidimensional self-affine sets: non-empty interior and the set of uniqueness

Kevin G. Hare, Nikita Sidorov (2015)

Studia Mathematica

Let M be a d × d real contracting matrix. We consider the self-affine iterated function system Mv-u, Mv+u, where u is a cyclic vector. Our main result is as follows: if | d e t M | 2 - 1 / d , then the attractor A M has non-empty interior. We also consider the set M of points in A M which have a unique address. We show that unless M belongs to a very special (non-generic) class, the Hausdorff dimension of M is positive. For this special class the full description of M is given as well. This paper continues our work begun...

Multifractal analysis for Birkhoff averages on Lalley-Gatzouras repellers

Henry W. J. Reeve (2011)

Fundamenta Mathematicae

We consider the multifractal analysis for Birkhoff averages of continuous potentials on a class of non-conformal repellers corresponding to the self-affine limit sets studied by Lalley and Gatzouras. A conditional variational principle is given for the Hausdorff dimension of the set of points for which the Birkhoff averages converge to a given value. This extends a result of Barral and Mensi to certain non-conformal maps with a measure dependent Lyapunov exponent.

Multifractal analysis of the divergence of Fourier series

Frédéric Bayart, Yanick Heurteaux (2012)

Annales scientifiques de l'École Normale Supérieure

A famous theorem of Carleson says that, given any function f L p ( 𝕋 ) , p ( 1 , + ) , its Fourier series ( S n f ( x ) ) converges for almost every x 𝕋 . Beside this property, the series may diverge at some point, without exceeding O ( n 1 / p ) . We define the divergence index at  x as the infimum of the positive real numbers β such that S n f ( x ) = O ( n β ) and we are interested in the size of the exceptional sets E β , namely the sets of  x 𝕋 with divergence index equal to  β . We show that quasi-all functions in  L p ( 𝕋 ) have a multifractal behavior with respect to this definition....

Currently displaying 81 – 100 of 110