Displaying 61 – 80 of 110

Showing per page

Mesures invariantes pour les fractions rationnelles géométriquement finies

Guillaume Havard (1999)

Fundamenta Mathematicae

Let T be a geometrically finite rational map, p(T) its petal number and δ the Hausdorff dimension of its Julia set. We give a construction of the σ-finite and T-invariant measure equivalent to the δ-conformal measure. We prove that this measure is finite if and only if p ( T ) + 1 p ( T ) δ > 2 . Under this assumption and if T is parabolic, we prove that the only equilibrium states are convex combinations of the T-invariant probability and δ-masses at parabolic cycles.

Metric Diophantine approximation on the middle-third Cantor set

Yann Bugeaud, Arnaud Durand (2016)

Journal of the European Mathematical Society

Let μ 2 be a real number and let ( μ ) denote the set of real numbers approximable at order at least μ by rational numbers. More than eighty years ago, Jarník and, independently, Besicovitch established that the Hausdorff dimension of ( μ ) is equal to 2 / μ . We investigate the size of the intersection of ( μ ) with Ahlfors regular compact subsets of the interval [ 0 , 1 ] . In particular, we propose a conjecture for the exact value of the dimension of ( μ ) intersected with the middle-third Cantor set and give several results...

Metric spaces admitting only trivial weak contractions

Richárd Balka (2013)

Fundamenta Mathematicae

If (X,d) is a metric space then a map f: X → X is defined to be a weak contraction if d(f(x),f(y)) < d(x,y) for all x,y ∈ X, x ≠ y. We determine the simplest non-closed sets X ⊆ ℝⁿ in the sense of descriptive set-theoretic complexity such that every weak contraction f: X → X is constant. In order to do so, we prove that there exists a non-closed F σ set F ⊆ ℝ such that every weak contraction f: F → F is constant. Similarly, there exists a non-closed G δ set G ⊆ ℝ such that every weak contraction...

Micro tangent sets of continuous functions

Zoltán Buczolich (2003)

Mathematica Bohemica

Motivated by the concept of tangent measures and by H. Fürstenberg’s definition of microsets of a compact set A we introduce micro tangent sets and central micro tangent sets of continuous functions. It turns out that the typical continuous function has a rich (universal) micro tangent set structure at many points. The Brownian motion, on the other hand, with probability one does not have graph like, or central graph like micro tangent sets at all. Finally we show that at almost all points Takagi’s...

Minimizing movements for dislocation dynamics with a mean curvature term

Nicolas Forcadel, Aurélien Monteillet (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We prove existence of minimizing movements for the dislocation dynamics evolution law of a propagating front, in which the normal velocity of the front is the sum of a non-local term and a mean curvature term. We prove that any such minimizing movement is a weak solution of this evolution law, in a sense related to viscosity solutions of the corresponding level-set equation. We also prove the consistency of this approach, by showing that any minimizing movement coincides with the smooth evolution...

Minkowski sums of Cantor-type sets

Kazimierz Nikodem, Zsolt Páles (2010)

Colloquium Mathematicae

The classical Steinhaus theorem on the Minkowski sum of the Cantor set is generalized to a large class of fractals determined by Hutchinson-type operators. Numerous examples illustrating the results obtained and an application to t-convex functions are presented.

Currently displaying 61 – 80 of 110