Displaying 101 – 120 of 150

Showing per page

The strength of the projective Martin conjecture

C. T. Chong, Wei Wang, Liang Yu (2010)

Fundamenta Mathematicae

We show that Martin’s conjecture on Π¹₁ functions uniformly T -order preserving on a cone implies Π¹₁ Turing Determinacy over ZF + DC. In addition, it is also proved that for n ≥ 0, this conjecture for uniformly degree invariant Π ¹ 2 n + 1 functions is equivalent over ZFC to Σ ¹ 2 n + 2 -Axiom of Determinacy. As a corollary, the consistency of the conjecture for uniformly degree invariant Π¹₁ functions implies the consistency of the existence of a Woodin cardinal.

The structure of the σ -ideal of σ -porous sets

Miroslav Zelený, Jan Pelant (2004)

Commentationes Mathematicae Universitatis Carolinae

We show a general method of construction of non- σ -porous sets in complete metric spaces. This method enables us to answer several open questions. We prove that each non- σ -porous Suslin subset of a topologically complete metric space contains a non- σ -porous closed subset. We show also a sufficient condition, which gives that a certain system of compact sets contains a non- σ -porous element. Namely, if we denote the space of all compact subsets of a compact metric space E with the Vietoris topology...

The (sub/super)additivity assertion of Choquet

Heinz König (2003)

Studia Mathematica

The assertion in question comes from the short final section in Theory of capacities of Choquet (1953/54), in connection with his prototype of the subsequent Choquet integral. The problem was whether and when this operation is additive. Choquet had the much more abstract idea that all functionals in a certain wide class must be subadditive, and similarly for superadditivity. His treatment of this point was more like an outline, and his proof limited to a rather narrow special case. Thus the proper...

The symmetric Choquet integral with respect to Riesz-space-valued capacities

Antonio Boccuto, Beloslav Riečan (2008)

Czechoslovak Mathematical Journal

A definition of “Šipoš integral” is given, similarly to [3],[5],[10], for real-valued functions and with respect to Dedekind complete Riesz-space-valued “capacities”. A comparison of Choquet and Šipoš-type integrals is given, and some fundamental properties and some convergence theorems for the Šipoš integral are proved.

The Young Measure Representation for Weak Cluster Points of Sequences in M-spaces of Measurable Functions

Hôǹg Thái Nguyêñ, Dariusz Pączka (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Let ⟨X,Y⟩ be a duality pair of M-spaces X,Y of measurable functions from Ω ⊂ ℝ ⁿ into d . The paper deals with Y-weak cluster points ϕ̅ of the sequence ϕ ( · , z j ( · ) ) in X, where z j : Ω m is measurable for j ∈ ℕ and ϕ : Ω × m d is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set A ϕ , the integral I ( ϕ , ν x ) : = m ϕ ( x , λ ) d ν x ( λ ) exists for x Ω A ϕ and ϕ ̅ ( x ) = I ( ϕ , ν x ) on Ω A ϕ , where ν = ν x x Ω is a measurable-dependent family of Radon probability measures on m .

The σ-ideal of closed smooth sets does not have the covering property

Carlos Uzcátegui (1996)

Fundamenta Mathematicae

We prove that the σ-ideal I(E) (of closed smooth sets with respect to a non-smooth Borel equivalence relation E) does not have the covering property. In fact, the same holds for any σ-ideal containing the closed transversals with respect to an equivalence relation generated by a countable group of homeomorphisms. As a consequence we show that I(E) does not have a Borel basis.

Thin and fat sets for doubling measures in metric spaces

Tuomo Ojala, Tapio Rajala, Ville Suomala (2012)

Studia Mathematica

We consider sets in uniformly perfect metric spaces which are null for every doubling measure of the space or which have positive measure for all doubling measures. These sets are called thin and fat, respectively. In our main results, we give sufficient conditions for certain cut-out sets being thin or fat.

Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces

Riccarda Rossi, Giuseppe Savaré (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Compactness in the space L p ( 0 , T ; B ) , B being a separable Banach space, has been deeply investigated by J.P. Aubin (1963), J.L. Lions (1961, 1969), J. Simon (1987), and, more recently, by J.M. Rakotoson and R. Temam (2001), who have provided various criteria for relative compactness, which turn out to be crucial tools in the existence proof of solutions to several abstract time dependent problems related to evolutionary PDEs. In the present paper, the problem is examined in view of Young measure theory: exploiting...

Topological bar-codes of fractals: a new characterization of symmetric binary fractal trees

Tara D. Taylor (2009)

Banach Center Publications

The goal of this paper is to provide foundations for a new way to classify and characterize fractals using methods of computational topology. The fractal dimension is a main characteristic of fractal-like objects, and has proved to be a very useful tool for applications. However, it does not fully characterize a fractal. We can obtain fractals with the same dimension that are quite different topologically. Motivated by techniques from shape theory and computational topology, we consider fractals...

Currently displaying 101 – 120 of 150