Displaying 1201 – 1220 of 2107

Showing per page

On nonmeasurable images

Robert Rałowski, Szymon Żeberski (2010)

Czechoslovak Mathematical Journal

Let ( X , 𝕀 ) be a Polish ideal space and let T be any set. We show that under some conditions on a relation R T 2 × X it is possible to find a set A T such that R ( A 2 ) is completely 𝕀 -nonmeasurable, i.e, it is 𝕀 -nonmeasurable in every positive Borel set. We also obtain such a set A T simultaneously for continuum many relations ( R α ) α < 2 ω . Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.

On nonmeasurable selectors of countable group actions

Piotr Zakrzewski (2009)

Fundamenta Mathematicae

Given a set X, a countable group H acting on it and a σ-finite H-invariant measure m on X, we study conditions which imply that each selector of H-orbits is nonmeasurable with respect to any H-invariant extension of m.

On Ordinary and Standard Lebesgue Measures on

Gogi Pantsulaia (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

New concepts of Lebesgue measure on are proposed and some of their realizations in the ZFC theory are given. Also, it is shown that Baker’s both measures [1], [2], Mankiewicz and Preiss-Tišer generators [6] and the measure of [4] are not α-standard Lebesgue measures on for α = (1,1,...).

On random fractals with infinite branching: definition, measurability, dimensions

Artemi Berlinkov (2013)

Annales de l'I.H.P. Probabilités et statistiques

We investigate the definition and measurability questions of random fractals with infinite branching, and find, under certain conditions, a formula for the upper and lower Minkowski dimensions. For the case of a random self-similar set we obtain the packing dimension.

Currently displaying 1201 – 1220 of 2107