Displaying 201 – 220 of 311

Showing per page

Projective limits of vector measures.

Fidel José Fernández y Fernández-Arroyo, Pedro Jiménez Guerra (1990)

Revista Matemática de la Universidad Complutense de Madrid

A necessary and sufficient condition for the existence of the projective limit of measures with values in a locally convex space is given. A similar theorem for measures with values in different locally convex spaces (under certain conditions) is given too (in this case, the projective limit is valued in the projective limit of these spaces). Finally, a result about the projective limit of vector measures is stated.

Property ( 𝐰𝐋 ) and the reciprocal Dunford-Pettis property in projective tensor products

Ioana Ghenciu (2015)

Commentationes Mathematicae Universitatis Carolinae

A Banach space X has the reciprocal Dunford-Pettis property ( R D P P ) if every completely continuous operator T from X to any Banach space Y is weakly compact. A Banach space X has the R D P P (resp. property ( w L ) ) if every L -subset of X * is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product X π Y has property ( w L ) when X has the R D P P , Y has property ( w L ) , and L ( X , Y * ) = K ( X , Y * ) .

Radon-Nikodym property

Surjit Singh Khurana (2017)

Commentationes Mathematicae Universitatis Carolinae

For a Banach space E and a probability space ( X , 𝒜 , λ ) , a new proof is given that a measure μ : 𝒜 E , with μ λ , has RN derivative with respect to λ iff there is a compact or a weakly compact C E such that | μ | C : 𝒜 [ 0 , ] is a finite valued countably additive measure. Here we define | μ | C ( A ) = sup { k | μ ( A k ) , f k | } where { A k } is a finite disjoint collection of elements from 𝒜 , each contained in A , and { f k } E ' satisfies sup k | f k ( C ) | 1 . Then the result is extended to the case when E is a Frechet space.

Remarks on the spaces of differentiable multifunctions

Andrzej Kasperski (2011)

Banach Center Publications

In this paper we consider some spaces of differentiable multifunctions, in particular the generalized Orlicz-Sobolev spaces of multifunctions, we study completeness of them, and give some theorems.

Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals

A. Sikorska-Nowak (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We prove an existence theorem for the equation x' = f(t,xₜ), x(Θ) = φ(Θ), where xₜ(Θ) = x(t+Θ), for -r ≤ Θ < 0, t ∈ Iₐ, Iₐ = [0,a], a ∈ R₊ in a Banach space, using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of the measure of weak noncompactness.

Currently displaying 201 – 220 of 311