Products and convolutions of vector valued set functions
A necessary and sufficient condition for the existence of the projective limit of measures with values in a locally convex space is given. A similar theorem for measures with values in different locally convex spaces (under certain conditions) is given too (in this case, the projective limit is valued in the projective limit of these spaces). Finally, a result about the projective limit of vector measures is stated.
A Banach space has the reciprocal Dunford-Pettis property () if every completely continuous operator from to any Banach space is weakly compact. A Banach space has the (resp. property ) if every -subset of is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product has property when has the , has property , and .
For a Banach space and a probability space , a new proof is given that a measure , with , has RN derivative with respect to iff there is a compact or a weakly compact such that is a finite valued countably additive measure. Here we define where is a finite disjoint collection of elements from , each contained in , and satisfies . Then the result is extended to the case when is a Frechet space.
It is proved that if a Frechet space has property, then also has property, for .
In this paper we consider some spaces of differentiable multifunctions, in particular the generalized Orlicz-Sobolev spaces of multifunctions, we study completeness of them, and give some theorems.
We prove an existence theorem for the equation x' = f(t,xₜ), x(Θ) = φ(Θ), where xₜ(Θ) = x(t+Θ), for -r ≤ Θ < 0, t ∈ Iₐ, Iₐ = [0,a], a ∈ R₊ in a Banach space, using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of the measure of weak noncompactness.
The McShane and Kurzweil-Henstock integrals for functions taking values in a locally convex space are defined and the relations with other integrals are studied. A characterization of locally convex spaces in which Henstock Lemma holds is given.