Measurable Selection Theorems for Optimization Problems.
We investigate the problem of approximation of measurable multifunctions by monotone sequences of measurable simple ones. Our main tool is the Marczewski function, i.e., the characteristic function of a sequence of sets.
A brief account of the connections between Carathéodory multifunctions, Scorza-Dragoni multifunctions, product-measurable multifunctions, and superpositionally measurable multifunctions of two variables is given.
We prove an analogue of Topsøe's criterion for relative compactness of a family of probability measures which are regular with respect to a family sets. We consider measures whose values are compact convex sets in a locally convex linear topological space.
We introduced the notion of -boundedness of a filtered family of operators in the Musielak-Orlicz sequence space of multifunctions. This notion is used to get the convergence theorems for the families of -linear operators, -dist-sublinear operators and -dist-convex operators. Also, we prove that is complete.
We introduce the spaces , , and of multifunctions. We prove that the spaces and are complete. Also, we get some convergence theorems.
Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function . It is shown that if maps a modular space into subsets of a modular space , then is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that we have .
In this paper we prove a representation result for essentially bounded multivalued martingales with nonempty closed convex and bounded values in a real separable Banach space. Then we turn our attention to the interplay between multimeasures and multivalued Riesz representations. Finally, we give the multivalued Radon-Nikodym property.
The purpose of this paper is to introduce a definition of cliquishness for multifunctions and to study the search for cliquish, quasi-continuous and Baire measurable selections of compact valued multifunctions. A correction as well as a generalization of the results of [5] are given.
Spaces of cone absolutely summing maps are generalizations of Bochner spaces L p(μ, Y), where (Ω, Σ, μ) is some measure space, 1 ≤ p ≤ ∞ and Y is a Banach space. The Hiai-Umegaki space of integrably bounded functions F: Ω → cbf(X), where the latter denotes the set of all convex bounded closed subsets of a separable Banach space X, is a set-valued analogue of L 1(μ, X). The aim of this work is to introduce set-valued cone absolutely summing maps as a generalization of , and to derive necessary...
It is shown that product weakly measurable lower weak semi-Carathéodory multifunction is superpositionally measurable.