Connectedness properties of the range of vector and semimeasures.
A recent Olech-type lemma of Artstein-Rzeżuchowski [2] and its generalization in [7] are shown to follow from Visintin's theorem, by exploiting a well-known property of extreme points of the integral of a multifunction.
We study properties of the space ℳ of Borel vector measures on a compact metric space X, taking values in a Banach space E. The space ℳ is equipped with the Fortet-Mourier norm and the semivariation norm ||·||(X). The integral introduced by K. Baron and A. Lasota plays the most important role in the paper. Investigating its properties one can prove that in most cases the space is contained in but not equal to the space (ℳ,||·||(X))*. We obtain a representation of the continuous functionals on...
Continuous approximation selection theorems are given. Hence, in some special cases continuous versions of Fillipov's selection theorem follow.
In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for...
We discuss here several types of convergence of conditional expectations for unbounded closed convex random sets of the form where is a decreasing sequence of sub-σ-algebras and is a sequence of closed convex random sets in a separable Banach space.
In some recent papers, results of uniform additivity have been obtained for convergent sequences of measures with values in -groups. Here a survey of these results and some of their applications are presented, together with a convergence theorem involving Lebesgue decompositions.
In this paper we prove two convergence theorems for set-valued conditional expectations. The first is a set-valued generalization of Levy’s martingale convergence theorem, while the second involves a nonmonotone sequence of sub -fields.
We give sufficient conditions for the interchange of the operations of limit and the Birkhoff integral for a sequence of functions from a measure space to a Banach space. In one result the equi-integrability of ’s is involved and we assume almost everywhere. The other result resembles the Lebesgue dominated convergence theorem where the almost uniform convergence of to is assumed.
Let (Ω,Σ,μ) be a complete finite measure space and X a Banach space. We show that the space of all weakly μ-measurable (classes of scalarly equivalent) X-valued Pettis integrable functions with integrals of finite variation, equipped with the variation norm, contains a copy of if and only if X does.