On Lebesgue pseudonorms on
Let with card Γ ≥ c (c denotes the continuum). We construct two Radon measures μ,ν on X such that there exist open subsets of X × X which are not measurable for the simple outer product measure. Moreover, these measures are strikingly similar to the Lebesgue product measure: for every finite F ⊆ Γ, the projections of μ and ν onto are equivalent to the F-dimensional Lebesgue measure. We generalize this construction to any compact group of weight ≥ c, by replacing the Lebesgue product measure...
Estudiamos cuando el límite uniforme de una red de funciones cuasi-continuas con valores en un espacio localmente convexo X es también una función cuasi-continua, resaltando que esta propiedad depende del menor cardinal de un sistema fundamental de entornos de O en X, y estableciendo condiciones necesarias y suficientes. El principal resultado de este trabajo es el Teorema 15, en el que los resultados de [7] y [10] son mejorados, en relación al Teorema de L. Schwartz.
Let be a completely regular Hausdorff space, a boundedly complete vector lattice, the space of all, bounded, real-valued continuous functions on , the algebra generated by the zero-sets of , and a positive linear map. First we give a new proof that extends to a unique, finitely additive measure such that is inner regular by zero-sets and outer regular by cozero sets. Then some order-convergence theorems about nets of -valued finitely additive measures on are proved, which extend...
Bi-capacities have been recently introduced as a natural generalization of capacities (or fuzzy measures) when the underlying scale is bipolar. They allow to build more flexible models in decision making, although their complexity is of order , instead of for fuzzy measures. In order to reduce the complexity, the paper proposes the notion of -symmetric bi- capacities, in the same spirit as for -symmetric fuzzy measures. The main idea is to partition the set of criteria (or states of nature,...
Suppose is an ordered locally convex space, and Hausdorff completely regular spaces and a uniformly bounded, convex and closed subset of . For , let . Then, under some topological and order conditions on , necessary and sufficient conditions are established for the existence of an element in , having marginals and .
For , let be completely regular Hausdorff spaces, quasi-complete locally convex spaces, , the completion of the their injective tensor product, the spaces of all bounded, scalar-valued continuous functions on , and -valued Baire measures on . Under certain...
The main concern of this paper is to present some improvements to results on the existence or non-existence of countably additive Borel measures that are not Radon measures on Banach spaces taken with their weak topologies, on the standard axioms (ZFC) of set-theory. However, to put the results in perspective we shall need to say something about consistency results concerning measurable cardinals.
For a Banach space and a probability space , a new proof is given that a measure , with , has RN derivative with respect to iff there is a compact or a weakly compact such that is a finite valued countably additive measure. Here we define where is a finite disjoint collection of elements from , each contained in , and satisfies . Then the result is extended to the case when is a Frechet space.