Displaying 361 – 380 of 901

Showing per page

Infinite ergodic index d -actions in infinite measure

E. Muehlegger, A. Raich, C. Silva, M. Touloumtzis, B. Narasimhan, W. Zhao (1999)

Colloquium Mathematicae

We construct infinite measure preserving and nonsingular rank one d -actions. The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite and infinite measure which are properly exhaustive and weakly wandering. The next examples are staircase rank one infinite measure preserving d -actions; for these we show that the individual basis transformations have conservative ergodic Cartesian...

Invariance of Poisson measures under random transformations

Nicolas Privault (2012)

Annales de l'I.H.P. Probabilités et statistiques

We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields103 (1995) 409–429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples...

Invariant densities for C¹ maps

Anthony Quas (1996)

Studia Mathematica

We consider the set of C 1 expanding maps of the circle which have a unique absolutely continuous invariant probability measure whose density is unbounded, and show that this set is dense in the space of C 1 expanding maps with the C 1 topology. This is in contrast with results for C 2 or C 1 + ε maps, where the invariant densities can be shown to be continuous.

Invariant densities for random β -expansions

Karma Dajani, Martijn de Vries (2007)

Journal of the European Mathematical Society

Let β > 1 be a non-integer. We consider expansions of the form i = 1 d i / β i , where the digits ( d i ) i 1 are generated by means of a Borel map K β defined on { 0 , 1 } × [ 0 , β ( β 1 ) ] . We show existence and uniqueness of a K β -invariant probability measure, absolutely continuous with respect to m p λ , where m p is the Bernoulli measure on { 0 , 1 } with parameter p ( 0 < p < 1 ) and λ is the normalized Lebesgue measure on [ 0 , β ( β 1 ) ] . Furthermore, this measure is of the form m p μ β , p , where μ β , p is equivalent to λ . We prove that the measure of maximal entropy and m p λ are mutually singular. In...

Invariant measures and the compactness of the domain

Marian Jabłoński, Paweł Góra (1998)

Annales Polonici Mathematici

We consider piecewise monotonic and expanding transformations τ of a real interval (not necessarily bounded) into itself with countable number of points of discontinuity of τ’ and with some conditions on the variation V [ 0 , x ] ( 1 / | τ ' | ) which need not be a bounded function (although it is bounded on any compact interval). We prove that such transformations have absolutely continuous invariant measures. This result generalizes all previous “bounded variation” existence theorems.

Invariant measures for iterated function systems

Tomasz Szarek (2000)

Annales Polonici Mathematici

A new criterion for the existence of an invariant distribution for Markov operators is presented. Moreover, it is also shown that the unique invariant distribution of an iterated function system is singular with respect to the Hausdorff measure.

Currently displaying 361 – 380 of 901