Displaying 461 – 480 of 901

Showing per page

Nombres normaux

Anne Bertrand-Mathis (1996)

Journal de théorie des nombres de Bordeaux

Nous rassemblons divers résultats sur les nombres normaux et en déduisons de nouveaux résultats.

Noncommutative Poincaré recurrence theorem

Andrzej Łuczak (2001)

Colloquium Mathematicae

Poincaré’s classical recurrence theorem is generalised to the noncommutative setup where a measure space with a measure-preserving transformation is replaced by a von Neumann algebra with a weight and a Jordan morphism leaving the weight invariant. This is done by a suitable reformulation of the theorem in the language of L -space rather than the original measure space, thus allowing the replacement of the commutative von Neumann algebra L by a noncommutative one.

On a function that realizes the maximal spectral type

Krzysztof Frączek (1997)

Studia Mathematica

We show that for a unitary operator U on L 2 ( X , μ ) , where X is a compact manifold of class C r , r , ω , and μ is a finite Borel measure on X, there exists a C r function that realizes the maximal spectral type of U.

On a pointwise ergodic theorem for multiparameter semigroups.

Ryotaro Sato (1994)

Publicacions Matemàtiques

Let Ti (i = 1, 2, ..., d) be commuting null preserving transformations on a finite measure space (X, F, μ) and let 1 ≤ p < ∞. In this paper we prove that for every f ∈ Lp(μ) the averagesAnf(x) = (n + 1)-d Σ0≤ni≤n f(T1n1T2n2 ... Tdnd x)converge a.e. on X if and only if there exists a finite invariant measure ν (under the transformations Ti) absolutely continuous with respect to μ and a sequence {XN} of invariant sets with XN ↑ X such that νB > 0 for all nonnull invariant sets B and...

Currently displaying 461 – 480 of 901