-type quotient modules on the torus.
We consider several explicit examples of solutions of the differential equation Φ₁’²(z) + Φ₂’²(z) + Φ₃’²(z) = d²(z) of meromorphic curves in ℂ³ with preset infinitesimal arclength function d(z) by nonlinear differential operators of the form (f,h,d) → V(f,h,d), V = (Φ₁,Φ₂,Φ₃), whose arguments are triples consisting of a meromorphic function f, a meromorphic vector field h, and a meromorphic differential 1-form d on an open set U ⊂ ℂ or, more general, on a Riemann surface Σ. Most of them are natural...
We discuss a common framework for studying twists of Riemann surfaces coming from earthquakes, Teichmüller theory and Schiffer variations, and use it to analyze geodesics in the moduli space of isoperiodic 1-forms.
Atsuji proposed some integrals along Brownian paths to study the Nevanlinna characteristic function T(f,r) when f is meromorphic in the unit disk D. We show that his criterios does not apply to the basic case when f is a modular elliptic function. The divergence of similar integrals computed along the geodesic flow is also proved. (A)