Page 1 Next

Displaying 1 – 20 of 702

Showing per page

A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis

Hongfen Yuan (2017)

Czechoslovak Mathematical Journal

Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.

A characterization of Fuchsian groups acting on complex hyperbolic spaces

Xi Fu, Liulan Li, Xiantao Wang (2012)

Czechoslovak Mathematical Journal

Let G 𝐒𝐔 ( 2 , 1 ) be a non-elementary complex hyperbolic Kleinian group. If G preserves a complex line, then G is -Fuchsian; if G preserves a Lagrangian plane, then G is -Fuchsian; G is Fuchsian if G is either -Fuchsian or -Fuchsian. In this paper, we prove that if the traces of all elements in G are real, then G is Fuchsian. This is an analogous result of Theorem V.G. 18 of B. Maskit, Kleinian Groups, Springer-Verlag, Berlin, 1988, in the setting of complex hyperbolic isometric groups. As an application...

Currently displaying 1 – 20 of 702

Page 1 Next