Das Existenzproblem multivalenter Lösungen bei Differentialgleichungen.
Any geometrically finite polynomial f of degree d ≥ 2 with connected Julia set is accessible by structurally stable sub-hyperbolic polynomials of the same degree. Moreover, they are topologically conjugate to f on their Julia sets.
Let Y be a Riemann surface with compact boundary embedded into a hyperbolic Riemann surface of finite type X. It is proved that the space of deformations D of Y into X is an open subset of the Teichmüller space T(X) of X. Furthermore, D has compact closure if and only if Y is simply connected or isomorphic to a punctured disk, and D= T(X) if and only if the components of X Y are all disks or punctured disks.
Nous étudions les flots d’Anosov sur les variétés compactes de dimension 3 pour lesquels les distributions stable et instable faibles sont de classe . Nous classons tous ces flots lorsqu’ils préservent le volume puis nous construisons une famille d’exemples qui ne préservent pas le volume. Nous classons aussi ces flots sous une hypothèse de “pincement”. En application, nous décrivons les déformations des groupes fuchsiens dans le groupe des difféomorphismes du cercle.