Ideals in big Lipschitz algebras of analytic functions
For 0 < γ ≤ 1, let be the big Lipschitz algebra of functions analytic on the open unit disc which satisfy a Lipschitz condition of order γ on ̅. For a closed set E on the unit circle and an inner function Q, let be the closed ideal in consisting of those functions for which (i) f = 0 on E, (ii) as d(z,E),d(w,E) → 0, (iii) . Also, for a closed ideal I in , let = z ∈ : f(z) = 0 for every f ∈ I and let be the greatest common divisor of the inner parts of non-zero functions in I....