H1-BMO duality on Riemann surfaces.
It is an open question whether Nehari's theorem on the circle group has an analogue on the infinite-dimensional torus. In this note it is shown that if the analogue holds, then some interesting inequalities follow for certain trigonometric polynomials on the torus. We think these inequalities are false but are not able to prove that.
A well known theorem of Nehari asserts on the circle group that bilinear forms in H² can be lifted to linear functionals on H¹. We show that this result can be extended to Hankel forms in infinitely many variables of a certain type. As a corollary we find a new proof that all the norms on the class of Steinhaus series are equivalent.
We derive some properties of the Hardy class of analytic functions defined by the Salagean operator.
We present counterexamples to a conjecture of Böttcher and Silbermann on the asymptotic multiplicity of the Poisson kernel of the space and discuss conditions under which the Poisson kernel is asymptotically multiplicative.
In questo articolo studieremo le relazioni fra le funzioni armoniche nella palla iperbolica (sia essa reale, complessa o quaternionica), le funzione armoniche euclidee in questa palla, e le funzione pluriarmoniche sotto certe condizioni di crescita. In particolare, estenderemo al caso quaternionico risultati anteriori dell'autore (nel caso reale), e di A. Bonami, J. Bruna e S. Grellier (nel caso complesso).